
Chapter 14. Defining Classes

In This Chapter

In this chapter we will understand how to define custom classes and their

elements. We will learn to declare fields, constructors and properties for

the classes. We will revise what a method is and we will broaden our

knowledge about access modifiers and methods. We will observe the

characteristics of the constructors and we will set out how the program

objects coexist in the dynamic memory and how their fields are initialized.

Finally, we will explain what the static elements of a class are – fields

(including constants), properties and methods and how to use them

properly. In this chapter we will also introduce generic types (generics),

enumerated types (enumerations) and nested classes.

Custom Classes

The aim of every program written by the programmer is to solve a given

problem based on the implementation of a certain idea. In order to create a

solution, first, we sketch a simplified actual model, which does not represent

everything, but focuses on these facts, which are significant for the end

result. Afterwards, based on the sketched model, we are looking for an

answer (i.e. to create an algorithm) for our problem and the solution we

describe via given programming language.

Nowadays, the most used programming languages are the object-oriented.

And because the object-oriented programming (OOP) is close to the way

humans think, using one easily allows us to describe models of the

surrounding life. Certain reason for this behavior is, because OOP offers tools

to draw the set of concepts, which outline classes of objects in every model.

The term – class and the definition of custom classes, different from the .NET

system framework’s, is built-in feature of the C# programming language. The

purpose of this chapter is to get us know with it.

Let’s Recall: What Does It Mean Class and Object?

Class in the OOP is called a definition (specification) of a given type of

objects from the real-world. The class represents a pattern, which describes

the different states and behavior of the certain objects (the copies), which are

created from this class (pattern).

Object is a copy created from the definition (specification) of a given class,

also called an instance. When one object is created by the description of one

class we say the object is from type "name of the class".

500 Fundamentals of Computer Programming with C#

For example, if we have a class type Dog, which describes some of the

characteristics of a real dog, then, the objects based on the description of the

class (e.g. the doggies "Fido" and "Rex") are from type class Dog. It means

the same when the string "some string" is from class type String. The

difference is that objects from type Dog is are copies of the class, which is

not part of the system library classes of the .NET Framework, but defined by

ourselves (the users of the programming language).

What Does a Class Contain?

Every class contains a definition of what kind of data types and objects has in

order to be described. The object (the certain copy of this class) holds the

actual data. The data defines the object’s state.

In addition to the state, in the class is described the behavior of the objects.

The behavior is represented by actions, which can be performed by the

objects themselves. The resource in OOP, through which we can describe this

behavior of the objects from a given class, is the declaration of methods in

the class body.

Elements of the Class

Now, we will go through the main elements of every class, and we will explain

them in details latter. The main elements of a C# classes are the following:

- Class declaration – this is the line where we declare the name of the

class, e.g.:

public class Dog

- Class body – similar to the method idioms in the language, the classes

also have single class body. It is defined right after the class declaration,

enclosed in curly brackets "{" and "}". The content inside the brackets is

known as body of the class. The elements of the class, which are

numbered below, are part of the body.

public class Dog
{
 // … The body of the class comes here …
}

- Constructor – it is used for creating new objects. Here is a typical

constructor:

public Dog()
{
 // … Some code …
}

Chapter 14. Defining Classes 501

- Fields – they are variables, declared inside the class (somewhere in the

literature are known as member-variables). The data of the object,

which these variables represent, and are retained into them, is the

specific state of an object, and one is required for the proper work of

object’s methods. The values, which are in the fields, reflect the specific

state of the given object, but despite of this there are other types of

fields, called static, which are shared among all the objects.

// Field definition
private string name;

- Properties – this is the way to describe the characteristics of a given

class. Usually, the value of the characteristics is kept in the fields of the

object. Similar to the fields, the properties may be held by certain object

or to be shared among the rest of the objects.

// Property definition
private string Name { get; set; }

- Methods – from the chapter "Methods" we know that methods are

named blocks of programming code. They perform particular actions and

through them the objects achieve their behavior based on the class

type. Methods execute the implemented programming logic (algorithms)

and the handling of data.

Sample Class: Dog

Here is how a class looks like. The class Dog defined here owns all the

elements, which we described so far:

// Class declaration
public class Dog
{ // Opening bracket of the class body

 // Field declaration
 private string name;

 // Constructor declaration (peremeterless empty constructor)
 public Dog()
 {
 }

 // Another constructor declaration
 public Dog(string name)
 {
 this.name = name;

502 Fundamentals of Computer Programming with C#

 }

 // Property declaration
 public string Name
 {
 get { return name; }
 set { name = value; }
 }

 // Method declaration (non-static)
 public void Bark()
 {
 Console.WriteLine("{0} said: Wow-wow!",
 name ?? "[unnamed dog]");
 }
} // Closing bracket of the class body

At the moment we will not explain in greater details this code, because the

related information will be presented later in this chapter.

Usage of Class and Objects

In the chapter "Creating and Using Objects" we saw in details how new

objects of a given class are created and how they can be used. Now, shortly

we will revise this programming technique.

How to Use a Class Defined by Us (Custom Class)?

In order to be able to use a given class, first we need to create an object of it.

This is done by the reserved word new in combination with some of the

constructors of the class. This will create an object from a given class (type).

If we want to manipulate the newly created object, we will have to assign it to

a variable from its class type. By doing it, in this variable we will keep the

connection (reference) to the object.

Using the variable, and the “dot” notation, we can call the methods and the

properties of the object, and as well as gain access to the fields (member-

variables).

Example – A Dog Meeting

Let’s have the example from the previous section where we defined the class

Dog, describing a dog, and let’s add a method Main() to the class. In this

method we will demonstrate how to use the mentioned elements until here:

create few Dog objects, assign properties to these objects and call methods on

these objects:

Chapter 14. Defining Classes 503

static void Main()
{
 string firstDogName = null;
 Console.Write("Enter first dog name: ");
 firstDogName = Console.ReadLine();

 // Using a constructor to create a dog with specified name
 Dog firstDog = new Dog(firstDogName);

 // Using a constructor to create a dog wit a default name
 Dog secondDog = new Dog();

 Console.Write("Enter second dog name: ");
 string secondDogName = Console.ReadLine();

 // Using property to set the name of the dog
 secondDog.Name = secondDogName;

 // Creating a dog with a default name
 Dog thirdDog = new Dog();

 Dog[] dogs = new Dog[] { firstDog, secondDog, thirdDog };

 foreach (Dog dog in dogs)
 {
 dog.Bark();
 }
}

The output from the execution will be the following:

Enter first dog name: Axl
Enter second dog name: Bobby
Axl said: Wow-wow!
Bobby said: Wow-wow!
[unnamed dog] said: Wow-wow!

In the example program, with the help of Console.ReadLine(), we got the

name of the objects of type dog, which the user should input.

We assigned the first entered string to the variable firstDogName. Afterwards

we used this variable when we created the first object from class type Dog –

firstDog, by assigning it to the parameter of the constructor.

We created the second object Dog, without using a string for the name of the

dog in the constructor. With the help of Console.ReadLine() we got the

504 Fundamentals of Computer Programming with C#

name of the dog and then the value was assigned to the property Name. This

is done by using a “dot” convention, applied to the variable, which keeps the
reference to the second object from type Dog – secondDog.Name.

When we created the third object from class type Dog, we used for the name

of the dog its default value which is null. Note that in the Bark() method

dogs whthout name (name == null) are printed as “[unnamed dog]”.

Afterward we created an array from type Dog, by initializing it with the three

newly created objects.

At the end, we used a loop, to go through the array of objects from type Dog.

For every element from the array we again used the “dot” notation, be calling
the method Bark() for the particular object: dog.Bark().

Nature of Objects

Let’s revise, when we create an object in .NET, one consists from two parts –

the significant part (data), which contains its data and it is located in the

memory of the operating system called a dynamic memory (heap) and a

reference part to this object, which resides in the other part of the operating

system’s memory, where are stored the local variable and parameters of the

methods (the program execution stack).

For example, let’s have a class called Dog, which has the properties for name,

kind and age. Let’s create a variable dog from this class. This variable is a

reference to the object and is in the dynamic memory (heap).

The reference is a variable, which can access objects. The figure below

depicts an example reference, which has link to the real object in the heap,

and is called with the name dog. One, compare to the variable from primitive

(value type), does not contain the real value (i.e. the data of the object), but

the address, where one is located in the heap memory:

When we declare one variable from type a particular class, and we do not

want the variable to be associated with a specific object, then we assign to it

the value null. The reserved word null in the C# language means, that the

variable does not point to any object (there is a missing value):

HeapStack

Dog@a8fe24

dog

dog reference

name

kind

age

dog object

Chapter 14. Defining Classes 505

Organizing Classes in Files and Namespaces

In C# the only one limitation regarding the saving of our own custom classes

is: they have to be saved in files with file extension .cs. In such a file

several classes, structures and other types can be defined. Although it is not a

requirement of the compiler, it is recommended every class to be stored in

exactly one file, which corresponds to its name, i.e. the class Dog should

be saved in a file Dog.cs.

Organizing Classes in Namespaces

As we should know from the chapter "Creating and Using Objects", the

namespaces in C# are named group of classes, which are logically

connected, without a requirement how they are stored in the file system.

If we want to include in our code namespaces for the operation in our classes,

declared in some file or set of files, this should be done by the so named

using directives. They are not required, but if they exist, they are on the

first lines in the class file, before the declaration of the classes or other types.

In the next paragraphs we will understand how they exactly are used.

After the insertion of the used namespaces, the next is the declaration of the

namespace of the classes in the file. As we know, there is no requirement to

declare classes in a namespace, but it is a good programming technique if we

do it, because the class distribution in the namespace is used for better

organization of the code and determination of the classes with equal names.

The namespaces contain classes, structure, interfaces and other types of

data, and as well other namespaces. An example of nested namespace is

System, which contains the namespace Data. The full name of the second

namespace is System.Data and one is nested in the namespace System.

The full name of a class in .NET Framework is the class name, preceded by

the namespace in which the class is declared, e.g.: <namespace_name>.
<class_name>. By the using reserved word we can use types from certain

namespace, without writing the full name, e.g.:

using System;
…
DateTime date;

HeapStack

null

dog

null reference null

506 Fundamentals of Computer Programming with C#

Instead of:

System.DateTime date;

One typical declaration sequence, which we should follow when we create

custom classes in .cs files, is:

// Using directives – optional
using <namespace1>;
using <namespace2>;

// Namespace definition - optional
namespace <namespace_name>
{
 // Class declaration
 class <first_class_name>
 {
 // … Class body …
 }

 // Class declaration
 class <second_class_name>
 {
 // … Class body …
 }

 // …

 // Class declaration
 class <n-th_class_name>
 {
 // … Class body …
 }
}

The declaring of the namespace and the relevant include of it is already

explained in the chapter "Creating and Using Objects" and therefore we will

not discuss it again.

Before we continue, let’s look into the first line of the previous snippet.

Instead include of namespace it is a source code comment. This is not a

problem in compilation time, the comments are "removed" from the code and

thus the first line is still the including statement.

Chapter 14. Defining Classes 507

Encoding of Files and Using of Cyrillic and Unicode

While we are creating a .cs file, in which to declare our classes, it is good to

think about its character encoding in the file system.

In the .NET Framework the compiled code is represented in Unicode so it is

possible to use characters in our code from alphabets other than Latin. In the

next example we use Cyrillic letters for identifiers in Bulgarian language as

well as comments in the code, written in Bulgarian (in Cyrillic letters):

using System;

public class EncodingTest
{
 // ТșȥȦȢȖ ȞȢȠșȡȦаȤ
 static int ȗȢȘиȡи = 4;

 static void Main()
 {
 Console.WriteLine("years: " + ȗȢȘиȡиƀ;
 }
}

This code will compile and execute without a problem, but to keep the

characters readable in the Visual Studio editor we need to provide an

appropriate encoding of the file.

As we know from the "Strings" chapter, some not all characters can be stored

in all encodings. If we use non-standard characters such as Chinese, Cyrillic

or Arabic letters, we can use UTF-8 or other character encoding that supports

these characters. By default Visual Studio uses the default character encoding

(system locale) defined in the regional settings in Windows. This might be

ISO-8859-1 in U.K. or U.S. and Windows-1251 in Bulgaria.

To use a different encoding other than the system’s default encoding in Visual

Studio, we need to choose the appropriate encoding of the file when opening

it in the editor:

1. From the File menu we choose Open and then File.

2. In the Open File window we click on the option next to the button

Open and we choose Open With…

3. From the list in the Open With window we choose an editor with

encoding support, for example CSharp Editor with Encoding.

4. Then press [OK].

5. In the window Encoding we choose the appropriate encoding from the

dropdown menu Encoding.

6. Then press [OK].

508 Fundamentals of Computer Programming with C#

The steps for saving files in the file system with a specific encoding are:

1. From the File menu we choose Save As.

2. In the window Save File As we press the drop-down box next to the

button Save and choose Save with Encoding.

3. In Advanced Save Options we select the desired encoding from the

list (preferably the universal UTF-8).

4. From the Line Endings we select the desired line ending type.

Although we have the ability to use characters from any non-English alphabet,

in .cs files it is highly recommended to write all the identifiers and

comments in English, because this way our code will be readable for more

people in the world.

Imagine that you live in Germany and you need to type a code written by a

Vietnamese person, where the names of all variables and comments are in

Vietnamese. You will prefer English, right? Then think about how a developer

from Vietnam will handle variables and comments in German.

Modifiers and Access Levels (Visibility)

Let’s revise, from the chapter "Methods” we know that a modifier is a

reserved word and with the help of it we add additional information for the

compiler and the code related to the modifier.

In C# there are four access modifiers: public, private, protected and

internal. The access modifiers can be used only in front the following

elements of the class: class declaration, fields, properties and methods.

Modifiers and Access Levels

As we explained, in C# there are four access modifiers – public, private,

protected and internal. Based on them we control the access (visibility) to

the elements of the class, in front of which they are used. The levels of access

Chapter 14. Defining Classes 509

in .NET are public, protected, internal, protected internal and

private. In this chapter we will review in details only public, private and

internal. More about protected and protected internal we will learn in

"Object-Oriented Programming Principles".

Access Level "public"

When we use the modifier public in front of some element, we are telling the

compiler, that this element can be accessed from every class, no matter

from the current project (assembly), from the current namespace. The access

level public defines the miss of restrictions regarding the visibility. This

access level is the least restricted access level in C#.

Access Level "private"

The access level private is the one, which defines the most restrictive

level of visibility of the class and its elements. The modifier private is used

to indicate, that the element, to which is issued, cannot be accessed from

any other class (except the class, in which it is defined), even if this class

exists in the same namespace. This is the default access level, i.e. it is used

when there is no access level modifier in front of the respective element of a

class (this is true only for elements inside a class).

Access Level "internal"

The modifier internal is used to limit the access to the elements of the class

only to files from the same assembly, i.e. the same project in Visual Studio.

When we create several projects in Visual Studio, the classes from will be

compiled in different assemblies.

Assembly

.NET assemblies are collections of compiled types (classes and other

types) and resources, which form a logical unit. Assemblies are stored in a

binary file of type .exe or .dll. All types in C# and as general in .NET

Framework can reside only inside assemblies. By every compilation of a .NET

application one or several assemblies are created by the C# compiler and

each assembly is stored inside an .exe or .dll file.

Declaring Classes

The definition of a class is based on strict syntactical rules:

[<access_modifier>] class <class_name>

When we declare a class, it is mandatory to use the reserved word class.

After it must stay the name of the class <class_name>.

510 Fundamentals of Computer Programming with C#

Besides the reserved word class and the name of the class, in the declaration

of the class can be used several modifiers, e.g. the reviewed until now

modifiers.

Class Visibility

Let’s consider two classes – A and B. We say that, class A accesses the

elements of class B, if the first class can do one of the following:

1. Creates an object (instance) from class type B.

2. Can access distinct methods and fields in the class B, based on the

access level assigned to the particular methods and fields.

There is also another operation, which can be done over the classes, when the

visibility allows it. The operation is called inheritance of a class, but we will

discuss it later in the chapter Object-Oriented Programming Principles.

As we understood, the access level term means "visibility". If the class A

cannot "see" the class B, the access level of the methods and the fields in B

does not matter.

The access levels, which an outer class can have, are only public and

internal. Inner classes can be defined with other access levels.

Access Level "public"

If we declare a class access modifier as public, we can reach it from every

class and from every namespace, regardless of where it exists. It means

that every other class can create objects from this type and has access to the

methods and the fields of the public class.

Just to know, if we want to use a class with access level public from other

namespace, different from the current, we should use the reserved word for

including different namespaces using or every time we should write the full

name of the class.

Access Level "internal"

If we declare one class with access modifier internal, one will be accessible

only from the same namespace. It means that only the classes from the

same assembly can create objects from this type class and to have access to

the methods and fields (with related access level) of the class. This access

level is the default, where it is not used access modifier by the declaration of

the class.

If we have two projects in common solution in Visual Studio and we want to

use a class from one project into the other one then the referenced class

should be declared as public.

Chapter 14. Defining Classes 511

Access Level "private"

If we want to be exhaustive, we have to mention that as access modifier for a

class can be used the visibility modifier private, but this is related to the

term "inner class" (nested class), which we will review in the "Nested Classes"

section. Private classes like other private members are accessible only inside

the class which defined them.

Body of the Class

By similarity to the methods, after the declaration of the class follows its

body, i.e. the part of the class where resides the following programming code:

[<access_modifier>] class <class_name>
{
 // … Class body – the code of the class goes here …
}

The body of the class begins with opening curly bracket "{" and ends with

closing one – "}". The class always should have a body.

Class Naming Convention

Equal to the methods, for creation of the class names there are the following

common standards:

1. The names of the classes begin with capital letter, and the rest of the

letters are lower case. If the name of the class consists of several

words, every word begins with capital letter, without separator to be

used. This is the well-known PascalCase convention.

2. For name of the classes nouns are usually used.

3. It is recommended the name of the class to be in English language.

Here are some example class names, which are following the guidelines:

Dog
Account
Car
BufferedReader

More about the name of the classes we will learn in the chapter "High-Quality

Programming Code".

The Reserved Word "this"

The reserved word this in C# is used to reference the current object,

when one is used from method in the same class. This is the object, which

method or constructor is called. The reserved word can be deemed as an

512 Fundamentals of Computer Programming with C#

address (reference), given priory from the language authors, with which we

access the elements (fields, methods, constructor) of the own class:

this.myField; // access a field in the class
this.DoMyMethod(); // access a method in the class
this(3, 4); // access a constructor with two int parameters

Currently, we will not explain the given code above. Later, we will do it in

other sections of this chapter, dedicated to the elements of the class (fields,

methods, constructors) and as well related to the reserved word this.

Fields

Objects describe things from the real world. In order to describe an object, we

focus on its characteristics, which are related to the problems solved in our

program. These characteristics of the real-world object we will hold in the

declaration of the class in special types of variables. These variables, called

fields (or member-variables), are holding the state of the object. When we

create an object based on certain class definition, the values of the fields are

containing the characteristics of the created object (its state). These

characteristics have different values different for the different objects.

Declaring Fields in a Class

Until now we have discussed only two types of variables (see "Methods")

depending on where they are declared:

1. Local variables – these are the variables declared in the body of some

method (or block).

2. Parameters – these are the variables in the list of parameters, which

one method can have.

In C# a third type of variable exists, called field or instance variable.

Fields are declared in the body of the class, outside the body of a single

method or constructor.

Fields are declared in the body of the class but not in the

bodies of the methods or the constructors.

This is a sample code declaring several fields:

class SampleClass
{
 int age;
 long distance;
 string[] names;
 Dog myDog;

Chapter 14. Defining Classes 513

}

More formal, the declaration of a field is done in the following way:

[<modifiers>] <field_type> <field_name>;

The <field_type> part determinates the type of a given field. This type can

be primitive (byte, short, char and so on), an array, or also some class type

(e.g. Dog or string).

The <field_name> part is the name of the field. As the name of the normal

variables, when we declare the name of the instance-variables, we should

obey the rules for naming of identifiers in C# (see chapter "Primitive Types

and Variables").

The <modifiers> part is a definition, which describes the access modifiers

and as well other modifiers. The last ones are not a mandatory part of the

field declaration.

Modifiers and the access modifiers, allowed in the declaration of one field, are

explained in chapter "Primitive Types and Variables".

In this chapter, from the other modifiers, which are not based on access

levels, and can be used in the declaration of fields, we will discuss static,

const and readonly.

Scope

The scope of a class field starts from the line where is declared and ends at

the closing bracket of the body of the class.

Initialization during Declaration

When we declare one field it is possible to assign to it an initial value. We do

this similarly to an assignment of normal local variable:

[<modifiers>] <field_type> <field_name> = <initial_value>;

Of course, the <initial_value> has to be a type compatible with the field’s
type, e.g.:

class SampleClass
{
 int age = 5;
 long distance = 234; // The literal 234 is of integer type

 string[] names = new string[] { "Peter", "Martin" };
 Dog myDog = new Dog();

514 Fundamentals of Computer Programming with C#

 // … Other code …
}

Default Values of the Fields

Every time, when we create a new object of a given class, it is allocated

memory in the heap for every field from the class. In order this to be done

the memory is initialized automatically with the default values for the

certain field. The fields, which do not have explicitly a default value in the

code, use the default value specified for the .NET type, to which they belong.

This is different for the local variables defined in methods. If a local variable in

a method does not have a value assigned, the code will not compile. If a

member variable (field) in a class does not have a value assigned, it will be

automatically zeroed by the compiler.

When an object is created all of the fields are initialized with

their respective default values in .NET, except if they are not

explicitly initialized with some other value.

In some languages (as C and C++) the newly created objects are not

initialized with default values of theirs data and this creates conditions for

hard-to-find errors. The last leads to uncontrolled behavior, where the

program sometimes works correctly (when the allocated memory by chance

has good values), and sometimes does not work (when the allocated memory

does not contain the proper values). In C# and generally in .NET Framework

this problem is solved by the default values for each type coming from the

framework.

The value of all types is 0 or something similar. For the most used types these

values are as the follows:

Type of the Field Default Value

bool false

byte 0

char '\0'

decimal 0.0M

double 0.0D

float 0.0F

int 0

object reference null

For more detailed information you can check chapter "Primitive Types and

Variables" and its section about the primitive types and their default values.

Chapter 14. Defining Classes 515

For example, if we create a class Dog and we define for it fields name, age and

length and check for the gender isMale, without explicitly initializing them,

they will be automatically zeroed when we create an object of this class:

public class Dog
{
 string name;
 int age;
 int length;
 bool isMale;

 static void Main()
 {
 Dog dog = new Dog();

 Console.WriteLine("Dog's name is: " + dog.name);
 Console.WriteLine("Dog's age is: " + dog.age);
 Console.WriteLine("Dog's length is: " + dog.length);
 Console.WriteLine("Dog is male: " + dog.isMale);
 }
}

Respectively, when we execute the program we will have as output the

following:

Dog's name is:
Dog's age is: 0
Dog's length is: 0
Dog is male: False

Automated Initialization of Local Variables and Fields

If we define a local variable in one method, without initializing it, and

afterward we try to use it (e.g. printing its value), this will trigger a

compilation error, because the local variables are not initialized with default

values when they are declared.

Unlike fields, local variables are not initialized with default

values when they are declared.

Let’s have look into one example:

static void Main()
{
 int notInitializedLocalVariable;
 Console.WriteLine(notInitializedLocalVariable);

516 Fundamentals of Computer Programming with C#

}

If we try to compile, we will receive the following error:

Use of unassigned local variable 'notInitializedLocalVariable'

Custom Default Values

A good programming practice is, when we declare fields in the class, to

explicitly initialize them with some default value, even if the default value is

zero. This will make our code clearer and easy to read.

One example for such initialization is the modified example class SampleClass

from the previous section:

class SampleClass
{
 int age = 0;
 long distance = 0;
 string[] names = null;
 Dog myDog = null;

 // … Other code …
}

Modifiers "const" and "readonly"

As was explained in the beginning in this section, in the declaration of one

field is allowed to use the modifications const and readonly. The fields,

declared as const or readonly are called constants. They are used when a

certain value is used several times. These values are declared only ones

without repetitions. Examples of constants in the .NET Framework are the

mathematical constants Math.PI and Math.E, and as well the constants

String.Empty and Int32.MaxValue.

Constants Based on "const"

The fields, declared with const, have to be initialized during the de facto

declaration and afterwards theirs value cannot be changed. They can be

accessed without to create an instance (an object) of the class and they are

common for all created objects in our program. Something more, when we

compile the code, the places where const fields are referred are replaced with

theirs particular values directly without to use the constant variable at all. For

this reason the const fields are called compile-time constants, because

they are replaced with the value during the compilation process.

Chapter 14. Defining Classes 517

Constants Based on "readonly"

The modifier readonly creates fields, which values cannot be changed once

they are assigned. Fields, declared as readonly, allow one-time initialization

either in the moment of the declaration or in the class constructors. Later

theirs values cannot be changed. Because of this reason, the readonly fields

are called run-time constants – constants, because their values cannot be

changed after assignment and run-time, because this process happens during

the execution of the program (in runtime).

Let’s illustrate the foregoing with the following example:

public class ConstAndReadOnlyExample
{
 public const double PI = 3.1415926535897932385;
 public readonly double Size;

 public ConstAndReadOnlyExample(int size)
 {
 this.Size = size; // Cannot be further modified!
 }

 static void Main()
 {
 Console.WriteLine(PI);
 Console.WriteLine(ConstAndReadOnlyExample.PI);
 ConstAndReadOnlyExample instance =
 new ConstAndReadOnlyExample(5);
 Console.WriteLine(instance.Size);

 // Compile-time error: cannot access PI like a field
 Console.WriteLine(instance.PI);

 // Compile-time error: Size is instance field (non-static)
 Console.WriteLine(ConstAndReadOnlyExample.Size);

 // Compile-time error: cannot modify a constant
 ConstAndReadOnlyExample.PI = 0;

 // Compile-time error: cannot modify a readonly field
 instance.Size = 0;
 }
}

518 Fundamentals of Computer Programming with C#

Methods

In chapter "Methods" we have discussed how to declare and use a method.

In this section we will revise how we do this and we will focus on some

additional features from the process of creating methods. Till now we have

used static methods only. Now it is time to start using non-static (instance)

methods.

Declaring of Class Method

The declaration of methods is done in the following way:

// Method definition
[<modifiers>] [<return_type>] <method_name>([<parameters_list>])
{
 // … Method's body …
 [<return_statement>];
}

The mandatory elements for declaration of a method are the type of the

return value <return_type>, the name of the method <method_name> and

the opening and the closing brackets – "(" and ")".

The parameter list <params_list> is not mandatory. We use it to pass data

to the method, which we declare, when this is required.

We know, if the return type <return_type> is void, then

<return_statement> can be declared without the return statement. If

<return_type> is different from void, the method has to return a result with

the help of the reserved word return and an expression, which is from the

type <return_type> or a compatible one.

The work, which the method has to do, is situated in the method body,

enclosed in curly brackets – "{" and "}".

We already discussed some of the access modifiers that can be used in the

declaration of a method in the section "Visibility of Methods and Fields" we will

review in details this again.

The static modifier will be explained in depth in the section "Static Classes

and Static Members".

Example – Method Declaration

Let’s see the declaration of a method, which sums two values:

int Add(int number1, int number2)
{
 int result = number1 + number2;
 return result;

Chapter 14. Defining Classes 519

}

The name of the method is Add and the return value type is int. The

parameter list consists of two elements – the variables number1 and number2.

Accordingly, the return value is the sum of the two parameters as a result.

Accessing Non-Static Data of the Class

In "Creating and Using Objects", we have discussed how based on the "dot"

operator we can access fields and to call the methods of a given class. Now,

let’s recall how we use conventional non-static methods of a given class, i.e.

the methods do not have the modifier static in theirs declaration.

E.g. let’s have the class Dog with the field age. To print the value of this field

we need to create a Dog instance and access the field of this instance via a

“dot” notation:

public class Dog
{
 int age = 2;

 static void Main()
 {
 Dog dog = new Dog();
 Console.WriteLine("Dog's age is: " + dog.age);
 }
}

The result will be:

Dog's age is: 2

Accessing Non-Static Fields from Non-Static Method

The access to the value of one field can be done via the “dot” notation (as in
the last example dog.age), or via a method or property. Now, let’s create in

the class Dog a method, which will return the value of age:

public int GetAge()
{
 return this.age;
}

As we see, to access the value of the age field, inside, from the owner class,

we use the reserved word this. We know that the word this is a reference

to the current object, in which the method resides. Therefore, in our example,

520 Fundamentals of Computer Programming with C#

with "return this.age", we say "from the current object (this) take (the

use of the operator “dot”), the value of the field age, and return it as result

from the method (with the help of the reserved word return). Then, instead

from the Main() method to access the values of the field age of the object

dog, we simple call the method GetAge():

static void Main()
{
 Dog dog = new Dog();
 Console.WriteLine("Dog's age is: " + dog.GetAge());
}

The result of the execution based on the change will be the same.

Formally, the declaration of access to a field in the boundaries of a class is the

following:

this.<field_name>

Let’s emphasize, that this access option is possible only from non-static code,

i.e. method or block, which is without static modifier.

Except for retrieving of the value of one field, we can use the reserved word

this for modification of the field.

E.g., let’s declare a method MakeOlder(), which will be called every year on

the date of the birthday of our pet and this method will increment the age

with one year:

public void MakeOlder()
{
 this.age++;
}

To check if this is correct in the Main() method we add the following lines:

// One year later, at the birthday date…
dog.MakeOlder();
Console.WriteLine("After one year dog's age is: " + dog.age);

After the execution of the program, the result is the following:

Dog's age is: 2
After one year dog's age is: 3

Chapter 14. Defining Classes 521

Calling Non-Static Methods

Like the fields, which do not have static modifier in theirs declarations, the

methods, which are also non-static, can be called in the body of a class via

the reserved word this. This is happening again with the "dot" notation and

more specifically with the required arguments (if there are any):

this.<method_name>ſ…ƀ

For example, let’s create a method PrintAge(), which prints the age of the

object from type Dog, and for this purpose calls the method GetAge():

public void PrintAge()
{
 int myAge = this.GetAge();
 Console.WriteLine("My age is: " + myAge);
}

The first line of the example is indicating that we want to receive the age (the

value of the field age) of the current object, using the method GetAge(). This

is done via the reserved word this.

The access to the non-static elements of a class (fields and

methods) is done via the reserved word this and the

operator for access – "dot".

Skip "this" Keyword When Accessing Non-Static Data

When we access the fields of a class or we call its non-static methods, it is

possible to omit the reserved word this. Then both methods, which we

already declared will be written in this way:

public int GetAge()
{
 return age; // The same like this.age
}

public void MakeOlder()
{
 age++; // The same like this.age++
}

The reserved word this is used to indicate explicitly that we want to have

access to a non-static field of a class or to call some of its non-static methods.

When this explicit clarification is not needed, it can be skipped and directly to

access the elements of the class.

522 Fundamentals of Computer Programming with C#

Although it is understood clearly, the reserved word this is often used for

access to fields in the class, because it helps to make the code easier to read,

understand and maintain, by explicitly stating that we access a field and not a

local variable.

When it is not required explicitly the reserved word this can

be skipped when we access the elements of the class. For

better readability use this keyword even when not required.

Hiding Fields with Local Variables

From the section "Declaring Fields" above, we know that the scope of one

field starts from the line where the declaration is made to the closing curly

bracket of the class. For example let's see the OverlappingScopeTest class:

public class OverlappingScopeTest
{
 int myValue = 3;

 void PrintMyValue()
 {
 Console.WriteLine("My value is: " + myValue);
 }

 static void Main()
 {
 OverlappingScopeTest instance = new OverlappingScopeTest();
 instance.PrintMyValue();
 }
}

This code will have the following result on the console:

My value is: 3

On the other hand, when we implement the body of one method we have to

declare local variables which we will use for the work of the method. As we

know, the scope of a local variable begins from the line where it is declared

to the closing bracket of the body of the method. For example, let’s add this

method to the class OverlappingScopeTest:

Int CalculateNewValue(int newValue)
{
 int result = myValue + newValue;
 return result;

Chapter 14. Defining Classes 523

}

In this case, the local variable, which we will use to calculate the new value, is

result.

Sometimes the name of the local variable can overlap with the name of some

field. In this case there is a collision.

Let’s first look at one example, before we explain what it is about. Let’s
modify the method PrintMyValue() in the following way:

void PrintMyValue()
{
 int myValue = 5;
 Console.WriteLine("My value is: " + myValue);
}

If we declare in this way the method, could it be possible to compile this

code? And if it is compiled, is it possible to execute it? If it is compiled and

executed which value will be printed – the one of the field or the one of the

local variable?

After the execution of the Main() method, the result will be:

My value is: 5

This is so, because C# allows defining local variables, which names

match with fields of the class. If this happens, we say that the scope of

the local variable overlays the field variable (scope overlapping).

Therefore the scope of the local variable myValue with value 5 overlapped the

scope of the field variable in the class. Then, when we print we will get the

local variable value.

Despite this, sometimes it is required use the field instead the local variable

with the same name. In this case, to retrieve the value of the field, we use

the reserved word this. For this purpose we access the field by using the

"dot" operator, applied to the reserved word this. In this way, we say

deliberately that we want to use the field of the class, and not the local

variable with the same name.

Let’s take a look again at our example relate to the printing of the value

myValue:

void PrintMyValue()
{
 int myValue = 5;
 Console.WriteLine("My value is: " + this.myValue);
}

524 Fundamentals of Computer Programming with C#

This time, after we applied the changes, the result from the call of the method

is different:

My value is: 3

Visibility of Fields and Methods

In the beginning of this chapter we have discussed the generality of the

modifiers and the access levels for the elements in one class in C#. Later

we have discussed the access level in the declaration for one class.

Now we will discuss the visibility levels of fields and methods in a class.

Because the fields and the methods are elements of the class (members) and

have similar rules for access levels, we will expose these rules simultaneously.

Differently from the declaration of a class, when we declare fields and

methods in the class we can use the four access levels – public, protected,

internal and private. The access level protected will not be discussed in

this chapter, because it is related to class inheritance and is explained in

details in the chapter "Object-Oriented Programming Principles".

Before we continue, let’s revise, if one class A is not visible (does not have

access) from other class B, then none of its elements (fields and method) can

be accessed from class B.

If two classes are not visible one to other, then their

members (fields and methods) are not visible also,

regardless of what kind of access levels their elements have.

In the next subsections, to the explanations until now, we will review

examples, in which we have two classes (Dog and Kid) and which are visible

one to other, i.e. every from the classes can create objects from the other

type – the other class and to access its elements depending from the defined

access level declared. Here is how the first class Dog looks like:

public class Dog
{
 private string name = "Doggy";

 public string Name
 {
 get { return this.name; }
 }

 public void Bark()
 {
 Console.WriteLine("wow-wow");

Chapter 14. Defining Classes 525

 }

 public void DoSomething()
 {
 this.Bark();
 }
}

In addition to the fields and the methods the property Name is used, which

just returns the field’s value. We will discuss in details the property concept

later, so currently we will just focus on everything else except the properties.

The code of the class Kid looks like this:

public class Kid
{
 public void CallTheDog(Dog dog)
 {
 Console.WriteLine("Come, " + dog.Name);
 }

 public void WagTheDog(Dog dog)
 {
 dog.Bark();
 }
}

Currently, all elements (fields and methods) of both classes are declared with

access modifier public, but when we discuss the other access modifiers we

will change some of them accordingly. What we would like to find is how the

change in the access levels of the elements (fields and methods) of the class

Dog will be reflected, when the access is made with:

- The own body of the class Dog.

- The body of the class Kid, respectively, taking into account that Kid is

in the same namespace (or assembly), in which the Dog class is defined

or not.

Access Level "public"

When a method or a value of a class is declared with access level public, the

last can be used from other classes, independently from the fact if another

class is declared in the same namespace, assembly or outside of it.

Let’s review both type of access to members of a class, which are matched in

our classes Dog and Kid:

526 Fundamentals of Computer Programming with C#

The access to the member of the class is done inside the

same class directly (the class refers itself).

The access to the member of the class is done via a

reference to an object created in the body of another class

(the class refers another class).

When the members of both classes are public, we have the following:

Dog.cs

class Dog
{
 public string name = "Doggy";

 public string Name
 {
 get { return this.name; }
 }

 public void Bark()
 {
 Console.WriteLine("wow-wow");
 }

 public void DoSomething()
 {
 this.Bark();
 }
}

Kid.cs

class Kid
{
 public void CallTheDog(Dog dog)
 {
 Console.WriteLine("Come, " + dog.name);
 }

 public void WagTheDog(Dog dog)
 {
 dog.Bark();
 }
}

D

R

D

D

R

R

Chapter 14. Defining Classes 527

As we can see, we implement without problem the access to the field name

and the method Bark() of the class Dog from the body of the same class.

Independently, if the namespace of the class Kid is the same as Dog, we can,

from its body, access the field name and to call the method Bark() via the

“dot” operator, applied to the reference dog of the object from type Dog.

Access Level "internal"

When a member of some class is declared with access level internal, then

this element from the class can be accessed from every class in the same

assembly (i.e. in the same project in Visual Studio), but not from classes

outside it (i.e. from other projects in Visual Studio – from the same solution

or from a different solution).

Not that if we have a Visual Studio project, all classes in it are from the same

assembly and classes defined in different Visual Studio projects (in the same

or in a different solution) are from different assemblies.

Below is the explanation about the access level internal:

Dog.cs

class Dog
{
 internal string name = "Doggy";

 public string Name
 {
 get { return this.name; }
 }

 internal void Bark()
 {
 Console.WriteLine("wow-wow");
 }

 public void DoSomething()
 {
 this.Bark();
 }
}

Respectively, for the class Kid, we discuss two cases:

- When the class in the same assembly, then the access to the elements

of Dog will be allowed, independent of whether the classes are in the

same namespace or not:

D

D

528 Fundamentals of Computer Programming with C#

Kid.cs

class Kid
{
 public void CallTheDog(Dog dog)
 {
 Console.WriteLine("Come, " + dog.name);
 }

 public void WagTheDog(Dog dog)
 {
 dog.Bark();
 }
}

- When the class Kid is external for the assembly, in which Dog is

declared, then the access to the field name and the method Bark() will

be denied:

Kid.cs

class Kid
{
 public void CallTheDog(Dog dog)
 {
 Console.WriteLine("Come, " + dog.name);
 }

 public void WagTheDog(Dog dog)
 {
 dog.Bark();
 }
}

Actually the access level internal for members of the class Dog is impossible

for two reasons: insufficient visibility of the class and insufficient visibility of

its members. To allow access from other assembly to the class Dog, one is

required to be declared public and in the same time its members to be

declared as public. If the class or its members have lower visibility, the

access to it from other assemblies is denied (i.e. from other Visual Studio

projects which compile to different .dll / .exe file).

If we try to compile the class Kid, when one is external for the assembly, in

which the class Dog resides, we will get a compilation error.

R

R

R

R

Chapter 14. Defining Classes 529

Access Level "private"

The access level, which is the most restrictive, is private. The elements of

the class, which are declared with access modifier private (or without any,

because private is the default one), cannot be accessed outside of the

class in which they are declared.

Therefore, if we declare the field name and the method Bark() of the class

Dog with access modifier private, there is no problem to access them from

the same instance of the class Dog, but access from any other classes is not

permitted. If you try to access a private method from external class, a

compilation error occur. Below is the figure about the access level private:

Dog.cs

class Dog
{
 private string name = "Doggy";

 public string Name
 {
 get { return this.name; }
 }

 private void Bark()
 {
 Console.WriteLine("wow-wow");
 }

 public void DoSomething()
 {
 this.Bark();
 }
}

Accessing the name fields from the same class is permitted, but accessing it

from a different class (Kid) is restricted:

Kid.cs

class Kid
{
 public void CallTheDog(Dog dog)
 {
 Console.WriteLine("Come, " + dog.name);
 }

D

D

R

530 Fundamentals of Computer Programming with C#

 public void WagTheDog(Dog dog)
 {
 dog.Bark();
 }
}

We should know, when we assign access modifier to a filed, one in most of

the cases has to be private, because this ensures the highest level of

security applied to the field. Respectively, the access and the modification of

the value from other classes (if it is required) will be done only via properties

or methods. More about this technique we will learn in the section "Properties

and Encapsulation of Fields" as well as in the "Encapsulation" section of the

chapter "Object-Oriented Programming Principles".

How to Decide Which Access Level to Use?

Before we end up the section regarding visibility of the elements of a class,

let’s try something. Let’s define in the class Dog the field name and the method

Bark() witch access modifier private. Let’s also declare the method Main()
with the following body:

public class Dog
{
 private string name = "Doggy";

 // …

 private void Bark()
 {
 Console.WriteLine("wow-wow");
 }

 // …

 static void Main()
 {
 Dog myDog = new Dog();
 Console.WriteLine("My dog's name is " + myDog.name);
 myDog.Bark();
 }
}

The question is, if the class Dog can compile when we have declared the

elements with access modifier private and in the same time is applied a

”dot” notation to myDog in Main()?

R

Chapter 14. Defining Classes 531

The compilation finished successfully. Respectively, the result from the

execution of the method Main() which is declared in the class Dog will be the

following:

My dog's name is Rolf
Wow-wow

Everything works, because the access modifiers for the elements of the class

are applied to the class and not to a level objects. Because the variable myDog

is defined in the body of the class Dog (where also is situated Main() – the

start method of the program), we can access its elements (fields and

methods) via “dot” notation, regardless we have declared the access level as
private. If we try to do the same in the body of the class Kid, this will be not

possible, because the access to private fields from outside class is forbidden.

Constructors

In object-oriented programming, when creating an object from a given class,

it is necessary to call a special method of the class known as a constructor.

What Is a Constructor?

Constructor of a class is a pseudo-method, which does not have a return

type, has the name of the class and is called using the keyword new. The

task of the constructor is to initialize the memory, allocated for the object,

where its fields will be stored (those which are not static ones).

Calling a Constructor

The only one way to call a constructor in C# is through the keyword new.

It allocates memory for the new object (in the stack or in the heap, depending

on whether the object is a value type or a reference type), resets its fields to

zero, calls their constructors (or chain of constructors, formed in succession),

and at the end returns a reference to the newly created object.

Consider an example, which will clarify how the constructor works. We know

from chapter "Creating and Using Objects" how to create an object:

Dog myDog = new Dog();

In this case by using the keyword new we call the constructor of the class Dog

and by doing this, memory is allocated, needed for the newly created object

of the Dog type. When it comes to classes they are allocated in the dynamic

memory (in the so called "managed heap").

Let’s follow the process of calling a constructor during the creation of new

object step by step.

First, memory is allocated for the object:

532 Fundamentals of Computer Programming with C#

Next, its fields (if any) are initialized with the default values for their

respective types:

If the creation of the new object is successfully completed, the constructor

returns a reference to it, which is assigned to the variable myDog, from class

type Dog:

Chapter 14. Defining Classes 533

Declaring a Constructor

If we have the class Dog, here is how its most simplified constructor (without

parameters) will look like:

public Dog()
{
}

Formally, the declaration of the constructor appears in the following way:

[<modifiers>] <class_name>([<parameters_list>])

As we already know, the constructors are similar to methods, but they do not

have a return type (therefore we called them pseudo-methods).

Constructor’s Name

In C# it is mandatory that the name of every constructor matches the

name of the class in which it resides – <class_name>. In the example

above the name of the constructor is the same as the name of the class –

Dog. We should know that, as with methods, the name of the constructor is

always followed by round brackets – "(" and ")".

In (C#) it is not allowed to declare a method whose name matches the

name of the class (hence the name of the constructors). If nevertheless, a

method is declared with the class name, this will cause a compilation error.

public class IllegalMethodExample
{
 // Legal constructor
 public IllegalMethodExample ()
 {
 }

 // Illegal method
 private string IllegalMethodExample()
 {
 return "I am illegal method!";
 }
}

When we try to compile this class the compiler will display the following

compilation error message:

SampleClass: member names cannot be the same as their enclosing
type

534 Fundamentals of Computer Programming with C#

Parameter List

Similar to the methods, if we need extra data to create an object, the

constructor gets it through a parameter list – <parameters_list>. In the

example constructor of the class Dog there is no need of additional data to

create an object of this type and therefore there is no parameter list. More

about the parameter list will be explained in one of the later sections –
"Declaring a Constructor with Parameters".

Of course, after the declaration of the constructor its body is following, which

is like every method body in C#, but generally contains mostly initialization

logic, i.e. setting the initial values of the fields of the class.

Modifiers

It is evident that modifiers can be added in the declaration of the

constructors – <modifiers>. For modifiers that we know and which are not

access modifiers, i.e. const and static, we should know that only const is

not allowed to be used in constructors. Later in this chapter, in the "Static

Constructors" section we will learn more about the constructors declared with

modifier static.

Visibility of the Constructors

Similar to the methods and the fields, the constructors can be declared with

levels of visibility: public, protected, internal, protected, internal

and private. The access levels protected and protected internal will be

explained in chapter "Object-Oriented Programming Principles". The rest of

the access levels have the same meaning and behavior as with fields and

methods.

Initialization of the Fields in the Constructor

As explained earlier when creating a new object and calling its constructor, a

new memory is allocated for the non-static fields of the object of the class and

they are initialized with the default values for their types (see the section

"Calling a Constructor").

Furthermore, through the constructors we mainly initialize the fields of the

class with values set by us and not with the default ones.

E.g., in the examples we discussed so far, the field name of the object from

type Dog is always initialized during its declaration:

string name = "Sharo";

Instead of doing this during the declaration of the field, a better programming

style is to assign its value in the constructor:

public class Dog

Chapter 14. Defining Classes 535

{
 private string name;

 public Dog()
 {
 this.name = "Sharo";
 }

 // … гhe rest of the class body …
}

Although we initialize the fields in the constructor, some people recommend

explicitly assigning their type’s default values during initialization with

the purpose of improving the readability of the code, but it is a matter of

personal choice:

public class Dog
{
 private string name = null;

 public Dog()
 {
 this.name = "Sharo";
 }

 // … The rest of the class body …
}

Fields Initialization in the Constructor

Let’s see in details what the constructor does after being called and the class

fields have been initialized in its body. We know that, when called, it will

allocate memory for each field and this memory will be initialized with

the default values.

If the fields are of primitive type, then after the default values, we shall

assign new values.

In case the fields are from reference type, such as our field name, the

constructor will initialize them with null. It will then create the object of the

corresponding type, in this case the string "Sharo" and at the end a reference

will be assigned to the new object in the respective field, in our case the field

name.

The same will happen if we have other fields, which are not primitive types,

and then initialize them in the constructor. E.g. let’s have a class called Collar,

which describes a dog’s accessory – Collar:

536 Fundamentals of Computer Programming with C#

public class Collar
{
 private int size;

 public Collar()
 {
 }
}

Let our class Dog has a field called collar, which is from type Collar and

which is initialized in the constructor of the class:

public class Dog
{
 private string name;
 private int age;
 private double length;
 private Collar collar;

 public Dog()
 {
 this.name = "Sharo";
 this.age = 3;
 this.length = 0.5;
 this.collar = new Collar();
 }

 static void Main()
 {
 Dog myDog = new Dog();
 }
}

Representation in the Memory

Let’s follow the steps through which the constructor goes, after being called in

the Main() method.

As we know, as a first step it will allocate memory in the heap for all the

fields and will initialize them with their default values:

Chapter 14. Defining Classes 537

Then, the constructor will have to ensure the creation of the object for the

field name. It will call the constructor of the class string, which will do the

work on the string creation):

Now the constructor will keep the reference to the new string in the field name

of the Dog object:

538 Fundamentals of Computer Programming with C#

Then is the creation of the object from type Collar. Our constructor (of the

class Dog) calls the constructor of the class Collar, which allocates memory

for the object:

Next, the constructor will initialize it with the default value for the

respective type. The size of the Collar is not explicitly assigned so it will

take the default value for its type (0 for int):

Chapter 14. Defining Classes 539

After that the reference to the newly created object, which the constructor of

the class Collar returns as a result, will be assigned to the field collar:

Finally, the reference to the new object from type Dog will be assigned to

the local variable myDog in the method Main():

540 Fundamentals of Computer Programming with C#

Order of Initialization of the Fields

To avoid confusion, let’s explain the order in which the fields of a class

are initialized regardless of whether we have assigned to them values and /

or initialized them in the constructor.

First memory is allocated for the respective field in the heap and this

memory is initialized with the default value of the field type. E.g. let’s again

consider the example with the class Dog:

public class Dog
{
 private string name;

 public Dog()
 {
 Console.WriteLine(
 "this.name has value of: \"" + this.name + "\"");
 // … No other code here …
 }
 // … Rest of the class body …
}

When we try to create a new object of our class type the console will show:

Chapter 14. Defining Classes 541

this.name has value of: ""

After the initialization of the fields with the default value for the respective

type, the second step in CLR (Common Language Runtime) is to assign a

value to the field if such has been set when declaring the field.

So, if we change the line in the class Dog, where we declare the field name, it

will first be initialized with the value null and then it will be assigned the

value "Rex".

private string name = "Rex";

Respectively, for every creation of a new object of the class:

static void Main()
{
 Dog dog = new Dog();
}

The following will be printed:

this.name has value of: "Rex"

Only after these two steps of initializing the fields of the class (default value

initialization and possibly the value set by the programmer during the

declaration of the field) the constructor of the class is called. At this time,

the fields get the values, which are set in the body of the constructor.

Declaring a Constructor with Parameters

In the previous section, we saw how we can set values to the fields, other

than the default values. Very often, however, during the declaration of the

constructor, we don’t know what values the various fields will take. To tackle

this problem, the required information, similar to the methods with

parameters, the fields are assigned the values, given to them in the body of

the constructor. For example:

public Dog(string dogName, int dogAge, double dogLength)
{
 name = dogName;
 age = dogAge;
 length = dogLength;
 collar = new Collar();
}

542 Fundamentals of Computer Programming with C#

Similarly, the call of a constructor with parameters is done in the same

way as the call of method with parameters – the required values are supplied

as a list, the elements of which are separated with commas:

static void Main()
{
 Dog myDog = new Dog("Moby", 2, 0.4); // Passing parameters

 Console.WriteLine("My dog " + myDog.name +
 " is " + myDog.age + " year(s) old. " +
 " and it has length: " + myDog.length + " m.");
}

The result of the execution of this Main() method is the following:

My dog Moby is 2 year(s) old. It has length: 0.4 m.

There is no limitation for the number of the constructors of a class in C#. The

only requirement is that they differ in their signature (what signature is we

already explained in chapter "Methods").

Scope of Parameters of the Constructor

By analogy with the scope of the variables in the parameter list of a method,

the variables in the parameter list of one constructor have a scope

from the opening bracket of the constructor to the closing bracket, i.e.

throughout the body of the constructor.

Very often, when we declare a constructor with parameters it is possible to

name the variables from the parameter list with the same names as the

names of the fields, which are going to be initialized. Let’s, for example,

consider the constructor of the class Dog:

public Dog(string name, int age, double length)
{
 name = name;
 age = age;
 length = length;
 collar = new Collar();
}

Let’s compile and execute the Main() method declared a little bit above:

My dog is 0 year(s) old. It has length: 0 m

Strange result, isn’t it? In fact this result is not so awkward. The explanation

is the following: the scope, in which the variables from the list of the

constructor parameters are acting, overlaps the scope of acting of the fields

Chapter 14. Defining Classes 543

with the same names in the constructor. Thus, we do not assign any value

to the fields because in practice we have no access to them. For example,

instead of assigning the variable value to the field age, we assign the value of

the variable age to the variable itself:

age = age;

As we saw from the section "Hiding Fields with Local Variables", to avoid this

problem we should access the field, to which we want to assign a value,

using the keyword this:

public Dog(string name, int age, double length)
{
 this.name = name;
 this.age = age;
 this.length = length;
 this.collar = new Collar();
}

Now, assuming we execute again the Main() method:

static void Main()
{
 Dog myDog = new Dog("Moby", 2, 0.4);

 Console.WriteLine("My dog " + myDog.name +
 " is " + myDog.age + " year(s) old. " +
 " and it has length: " + myDog.length + " m");
}

The result will be exactly what we expect it to be:

My dog Moby is 2 year(s) old. It has length: 0.4 m

Constructor with Variable Number of Arguments

Similar to methods with variable number of arguments, discussed in

chapter "Methods", constructors can also be declared with a parameter for a

variable number of arguments. The rules for declaring and calling constructors

with a variable number of arguments are the same as the ones, described for

declaring and calling with the methods:

1. When we declare a constructor with variable number of arguments, we

must use the reserved word params, and then insert the type of the

parameters, followed by square parentheses. Finally the name of the

array follows, in which array the arguments used for the calling of the

544 Fundamentals of Computer Programming with C#

method are stored. For example for whole number arguments we can

use params int[] numbers.

2. It is allowed for the constructor with a variable number of arguments to

have other parameters too in the parameter list.

3. The parameter for the variable number of arguments must be the last in

the parameter list of the constructor.

Consider a sample declaration of a constructor of a class, which describes a

lecture:

public Lecture(string subject, params string[] studentsNames)
{
 // … Initialization of the instance variables …
}

The first parameter in the declaration is the name of the subject of the lecture

and the next parameter represents a variable number of arguments – the

names of the students. Here is how a sample object of this class would be

constructed:

Lecture lecture =
 new Lecture("Biology", "Peter", "Mike", "Steven");

Accordingly, as the first parameter is the name of the subject – "Biology",

and all the rest arguments – the names of the attending students.

Constructor Overloading

As we saw, we can declare constructors with parameters. This gives us a

possibility to declare constructors with different signatures (number and order

of the parameters) with the purpose of providing convenience to those who

will create objects from our class. Creating constructors with different

signatures is called constructor overloading.

Consider, for example, the class Dog. We can declare different constructors:

// No parameters
public Dog()
{
 this.name = "Axl";
 this.age = 1;
 this.length = 0.3;
 this.collar = new Collar();
}

// One parameter

Chapter 14. Defining Classes 545

public Dog(string name)
{
 this.name = name;
 this.age = 1;
 this.length = 0.3;
 this.collar = new Collar();
}

// Two parameters
public Dog(string name, int age)
{
 this.name = name;
 this.age = age;
 this.length = 0.3;
 this.collar = new Collar();
}

// Three parameters
public Dog(string name, int age, double length)
{
 this.name = name;
 this.age = age;
 this.length = length;
 this.collar = new Collar();
}

// Four parameters
public Dog(string name, int age, double length, Collar collar)
{
 this.name = name;
 this.age = age;
 this.length = length;
 this.collar = collar;
}

Reusing Constructors

In our last example we saw that, depending on the needs for creating objects

of our class, we can declare different variants of the constructors. It is easy to

notice that a large part of the constructor code is repeated. This leads us

to the question whether there is an alternative way for a constructor, which is

already doing an initializing, to be reused by the others to perform the same

initialization. On the other hand, at the beginning of the chapter it was

mentioned that a constructor cannot be called in the manner in which the

546 Fundamentals of Computer Programming with C#

methods are called but by the keyword new. There should be a way –

otherwise a lot of code will be repeated unnecessarily.

In C# a mechanism exists through which one constructor can call another

one declared in the same class. This is done again with the keyword this, but

used in another syntax structure in declaring the constructors:

[<modifiers>] <class_name>([<parameters_list_1>])
 : this([<parameters_list_2>])

To the well-known form of declaring a constructor (the first line of the

declaration above), we can add a colon, followed by the keyword this,

followed by parentheses. If the constructor we want to call has parameters, in

the brackets we need to add a list of parameters parameters_list_2 to be

supplied.

Here is how the code from the section about constructor overloading would

look like, in which instead of repeating the initialization of each of the fields,

we will call the constructors declared in the same class:

// No parameters
public Dog()
 : this("Axl") // Constructor call
{
 // More code could be added here
}

// One parameter
public Dog(string name)
 : this(name, 1) // Constructor call
{
}

// Two parameters
public Dog(string name, int age)
 : this(name, age, 0.3) // Constructor call
{
}

// Three parameters
public Dog(string name, int age, double length)
 : this(name, age, length, new Collar()) // Constructor call
{
}

// Four parameters

Chapter 14. Defining Classes 547

public Dog(string name, int age, double length, Collar collar)
{
 this.name = name;
 this.age = age;
 this.length = length;
 this.collar = collar;
}

As indicated by comments in the first constructor in the example above, if

necessary, in addition to calling any of the other constructors with certain

parameters, every constructor can add into its body a code, which performs

additional initializations or other actions.

Default Constructor

Consider the following question – what happens if we don’t declare a

constructor in our class? How can we create objects from this type?

As it often happens, when a class is without a single constructor, this issue is

resolved by C#. When we do not declare any constructors, the compiler will

create one for us and this one will be used to create objects such as our class.

This constructor is called default implicit constructor and it will not have

any parameters and will be empty (i.e. it will not do anything in addition to

the default zeroing of the object fields).

When we do not declare any constructor in a given class, the

compiler will create one, known as a default implicit

constructor.

For example, let’s declare the class Collar, without declaring any constructor

in it:

public class Collar
{
 private int size;

 public int Size
 {
 get { return size; }
 }
}

Although we do not have an explicitly declared constructor without

parameters, we can create objects of this class in the following way:

Collar collar = new Collar();

548 Fundamentals of Computer Programming with C#

The default parameterless constructor looks the following way:

<access_level> <class_name>() { }

We should know that the default constructor is always named like the class

<class_name>, and its parameter list is always empty as well as its body. The

compiler simply adds one if there is no constructor in the class. The default

constructor is usually public (except for some very specific situations, where

it is protected).

The default constructor is always without parameters.

To make sure that the default constructor is always without parameters let’s
try to call the default constructor by setting it with parameters:

Collar collar = new Collar(5);

The compiler will display the following error message:

'Collar' does not contain a constructor that takes 1 arguments

How the Default Constructor Works?

As we can guess, the only thing the default constructor will do when creating

objects of our class, is to zero the fields of the class. For example, if in the

class Collar we have not declared any constructor and we create an object

from it, and later we try to print the value in the field size:

static void Main()
{
 Collar collar = new Collar();
 Console.WriteLine("Collar's size is: " + collar.Size);
}

The result will be:

Collar's size is: 0

We see that the value saved in the field size of the object collar is just the

default value of the whole number type – int.

When a Default Constructor Will Not Be Created?

We have to know that if we declare at least one constructor in a given class

then the compiler will not create a default constructor.

To investigate this, consider the following example:

Chapter 14. Defining Classes 549

public Collar(int size)
 : this()
{
 this.size = size;
}

Let this be the only constructor in the class Collar. We try to call a

constructor without parameters in it, hoping that the compiler will have

created a default parameterless constructor for us. After we try to compile,

we will find out that what we are trying to do is not possible. The compiler will

show the following error:

'Collar' does not contain a constructor that takes 0 arguments

The rule about the default implicit parameterless constructor is:

If we declare at least one constructor in a given class, the

compiler will not create a default constructor for us.

Difference between a Default Constructor and a Constructor
without Parameters

Before we finish this section for the constructors, we will clarify something

very important:

Although the default constructor and the one without

parameters are similar in signature, they are completely

different.

The difference is that the default implicit constructor is created by the

compiler, if we do not declare any constructor in our class, and the

constructor without parameters is declared by us.

Moreover, as explained earlier, the default constructor will always have access

level protected or public, depending on the access modifier of the class,

while the level of access of the constructor without parameters all depends on

us – we define it.

Properties

In the world of object-oriented programming there is an element of the

classes called property, which is somewhere between a field and a

method and serves to better protect the state in the class. In some

languages for object-oriented programming, like C#, Delphi / Pascal, Visual

Basic, Python, JavaScript, and others, the properties are a part of the

language, i.e. there is a special mechanism to declare and use them. Other

languages like Java do not support the property concept and for this purpose

550 Fundamentals of Computer Programming with C#

the programmers should declare a pair of methods (for reading and modifying

the property) to provide this functionality.

Properties in C# – Introduction by Example

Using the properties is a good and proven practice and an important part of

the concepts for object-oriented programming. The creation of a property in

programming is done by declaring two methods – one for access (reading)

and one for modifying (setting) the value of the respective property.

Consider an example. Assume we have again class Dog, which describes a

dog. A characteristic of a dog is, for example, its color. The access to the

property "color" of a dog and its corresponding modification can be

accomplished in the following way:

// Getting (reading) a property
string colorName = dogInstance.Color;

// Setting (modifying) a property
dogInstance.Color = "black";

Properties – Encapsulation of Fields

The main objective of the properties is to ensure the encapsulation of the

state of the class in which they are declared, i.e. to protect the class from

falling into invalid state.

Encapsulation is hiding of the physical representation of data in one

class so that if we subsequently change this presentation, it will not reflect on

other classes, which use this class.

Though the C# syntax this is done by declaring the fields (physical

presentation of data) with possibly the most limited level of visibility (mostly

with the modifier private) and declaring that access to these fields (reading

and modifying) is to take place only through special accessor methods.

Example of Encapsulation

To illustrate what the encapsulation, which provides properties to a class, is

and what the properties themselves represent, we shall consider an example.

Let’s have a class, which represents a point from the 2D space with

properties representing the coordinates {x, y}. Here is how it would look like

if we declare each of the coordinates as a field:

Point.cs

class Point
{

Chapter 14. Defining Classes 551

 private double x;
 private double y;

 public Point(int x, int y)
 {
 this.x = x;
 this.y = y;
 }

 public double X
 {
 get { return this.x; }
 set { this.x = value; }
 }

 public double Y
 {
 get { return this.y; }
 set { this.y = value; }
 }
}

The fields of the objects of our class (i.e. the point’s coordinates) are declared

as private and cannot be accessed by a "dot" notation. If we create an

object from class Point, we can modify and read the properties (the

coordinates) of the point only through the properties for access to them:

PointTest.cs

using System;

class PointTest
{
 static void Main()
 {
 Point myPoint = new Point(2, 3);

 double myPointXCoord = myPoint.X; // Access a property
 double myPointYCoord = myPoint.Y; // Access a property

 Console.WriteLine("The X coordinate is: " + myPointXCoord);
 Console.WriteLine("The Y coordinate is: " + myPointYCoord);
 }
}

552 Fundamentals of Computer Programming with C#

The result of the execution of the Main() method will be:

The X coordinate is: 2
The Y coordinate is: 3

If, however, we decide to change the internal representation of the point’s
properties, e.g. instead of two fields, we declare them as a one-dimensional

array with two elements; we can do it without affecting in any way of the

other classes of our project:

Point.cs

using System;

class Point
{
 private double[] coordinates;

 public Point(int xCoord, int yCoord)
 {
 this.coordinates = new double[2];

 // Initializing the x coordinate
 coordinates[0] = xCoord;

 // Initializing the y coordinate
 coordinates[1] = yCoord;
 }

 public double X
 {
 get { return coordinates[0]; }
 set { coordinates[0] = value; }
 }

 public double Y
 {
 get { return coordinates[1]; }
 set { coordinates[1] = value; }
 }
}

The result of the implementation of the Main() method will not be changed

and will be the same even without changing a single character in the code of

the class PointTest.

Chapter 14. Defining Classes 553

The demonstration is a good example of data encapsulation of an object,

provided by the mechanism of the properties. Through them we hide the

internal representation of the information by declaring properties and

methods for accessing it, and if later a change occurs in the representation,

this will not affect the other classes using our class, because they only use its

properties and do not know how the information is represented “behind the
scene”.

Of course, the example shows only one of the benefits of class fields wrapping

(packing) into properties. Properties allow further control over the data

in the class and they can check whether the assigned values are correct

according to some criteria. For example, if we have a property “maximum
speed” for a class Car, it is possible, through properties, to require its value to

be within the range of 1 to 300 km/h.

Physical Presentation of the Properties in a Class

As we saw above, the properties may have different presentation in one

class at a physical level. In our example, the information about the properties

of the class Point initially was stored in two fields and later in one field–array.

However, if we decide instead of keeping the information about the properties

of the point in a field, to save it in a file or a database and every time we

need to access the respective property, we can read or write from the file or

the database rather than use the fields of the class as in the previous

examples. Since the properties are accessed by special methods (called

methods for access and modification or accessor methods) to be discussed

later, for the classes that will use our class the question how the information

will be stored would not matter (because of the good encapsulation).

In the most common case, however, the information about the properties of

the class is saved in a field of the class, which has the most rigorous level of

visibility – private.

It does not matter how the information for the properties in

a class in C# is saved, but usually this is done by a class field

with the most restrictive access level (private).

Property without Declaration of a Field

Consider an example, in which the property is stored neither in the field, nor

anywhere else, but recalculated when trying to access it.

Let’s have the class Rectangle, which represents the geometric shape of a

rectangle. Accordingly, this class has two fields – for width and for height.

Assume our class has one more property – area. Because we always can

calculate the property “area” of a rectangle based on the width and the

height, it is not required to define a separate field in the class to keep this

value. Therefore, we can simply declare a method for obtaining the area

through which we calculate the area of a rectangle:

554 Fundamentals of Computer Programming with C#

Rectangle.cs

using System;

class Rectangle
{
 private float height;
 private float width;

 public Rectangle(float height, float width)
 {
 this.height = height;
 this.width = width;
 }

 // Obtaining the value of the property area
 public float Area
 {
 get { return this.height * this.width; }
 }
}

As we will see later, a property does not necessarily have an accessing and a

modifying method at the same time. Therefore, it is allowed to declare only a

method for reading the property Area of the rectangle. There is no point to

have a method, which modifies the value of the area of a rectangle because

the area is always one and the same based on given lengths of the sides.

Declaring Properties in C#

To declare a property in C#, we have to declare access methods (for reading

and changing) of the respective property and to decide how we will store the

information related to the property in the class.

Before we declare the methods, however, we have to declare the property of

the class. Formal declaration of properties appears in the following way:

[<modifiers>] <property_type> <property_name>

With <modifiers> we have denoted both the access modifiers and other

modifiers (e.g. static, to be discussed in the next section of this chapter).

They are not a mandatory part of the declaration of a field.

The type of the property <property_type> specifies the type of the values

of the property. It may be either a primitive type (e.g. int), or a reference

type (e.g. array).

Chapter 14. Defining Classes 555

Respectively, <property_name> is the name of the property. It must begin

with a capital letter and to satisfy the PascalCase rule, i.e. every new word

that is adjoined to the end part of the property name, starts with a capital

letter. Here are some examples of properly named properties:

// MyValue property
public int MyValue { get; set; }

// Color property
public string Color { get; set; }

// X-coordinate property
public double X { get; set; }

The Body of a Property

Like classes and methods in C# properties also have bodies, where the

methods for access are declared (accessors).

[<modifiers>] <property_type> <property_name>
{
 // … Property's accessors methods go here
}

The body of a property begins with an opening bracket "{" and ends with a

closing bracket – "}". Properties should always have a body.

Method for Reading the Value of a Property (Getter)

As we explained, the declaration of a method for reading a value of a

property (in the literature called a getter) is made in the body of a property

by using the following syntaxes:

get { <accessor_body> }

The content of the block surrounded by the braces (<accessor_body>) is

similar to the contents of any method. The actions, which should be

performed to return the result of the method, are declared in it.

The method of reading the value of a property must end with a return or

throw operation. The type of the value, which is returned as a result of this

method, has to be the same as <property_type> described in the property

declaration.

Although earlier in this section we considered many examples of declared

properties with a method for reading their values, let’s consider another

example of a property – Age, which is of type int and is declared via a field in

the same class:

556 Fundamentals of Computer Programming with C#

private int age; // Field declaration

public int Age // Property declaration
{
 get { return this.age; } // Getter declaration
}

Calling a Method for Reading Property’s Value

Assume that the property Age from the last example is declared in the class

Dog. Then calling the method for reading the value of the property is done by

a “dot” notation, applied to a variable of the type, in the class of which the
property is declared:

Dog dogInstance = new Dog();
// …
int dogAge = dogInstance.Age; // Getter invocation
Console.WriteLine(dogInstance.Age); // Getter invocation

The last two lines of the example show that when accessing through a dot

notation the name of the property, its getter method (method for reading its

value) is called automatically.

Method for Modifying Property’s Value (Setter)

Like the method of reading the property’s value we can also declare the

method of changing (modifying) the value of a property (in the literature

known as setter). It is declared in the body of a property with void return

value and the assigned value is accessible through an implicit parameter

value.

The declaration is made in the body of the property through the following

syntax:

set { <accessor_body> }

The contents of the block surrounded by arrow brackets – <accessor_body>

are similar to the content of any method. It declares the actions that must be

performed to change the value of the property. The method uses a hidden

parameter called value, which is available in C# by default and contains the

new value of the property. The type of the parameter is the same as the type

of the property.

Let’s add the example for the property Age in the class Dog to illustrate what

we discussed so far:

private int age; // Field declaration

Chapter 14. Defining Classes 557

public int Age // Property declaration
{
 get { return this.age; }
 set { this.age = value; } // Setter declaration
}

Calling a Method for Modifying the Property’s Value

Calling the method to modify the property’s value is performed via the “dot”
notation, applied to the variable of the type, in the class of which the property

is declared:

Dog dogInstance = new Dog();
// …
dogInstance.Age = 3; // Setter invocation

In the last line where the value 3 is assigned the setter method of the

property Age is called. In this way the value is saved in the parameter value

and is assigned to the setter method of the property Age. In our example, the

value of the variable value is assigned to the field age from the class Dog, but

in the general case this can be handled in a more complicated way.

Assertion of the Input Values

It is a good practice in the programming process to check the validity of

the input values for the setter method of modifying a property and if they

are not valid to take the necessary “measures”. Mostly, in case of incorrect
input data an exception is caused.

Consider again the example with the age of the dog. As we know the age has

to be a positive number. To prevent someone from assigning a negative

number or a zero to the property Age, we add the following validation at the

beginning of the setter method:

public int Age
{
 get { return this.age; }
 set
 {
 // Take precaution: perform check for correctness
 if (value < 0)
 {
 throw new ArgumentException(
 "Invalid argument: Age should be a positive number.");
 }
 // Assign the new correct value
 this.age = value;

558 Fundamentals of Computer Programming with C#

 }
}

In case someone tries to assign a value to Age, which is a negative number or

0, the code will throw an exception from the type ArgumentException, with

details of the problem.

To protect itself from invalid data a class must verify the input values for

all properties and constructors submitted to the setter methods, as well as

all methods, which can change a field of a class. This programming practice to

protect classes from invalid data and invalid internal states is widely used and

is a part of the "Defensive Programming" concept, which we will discuss in

chapter "High-Quality Programming Code".

Automatic Properties in C#

In C# we could define properties without explicitly defining the underlying

field behind them. This is called automatic properties:

Point.cs

using System;

class Point
{
 public double X { get; set; }
 public double Y { get; set; }

 public Point(int x, int y)
 {
 this.X = x;
 this.Y = y;
 }
}

class PointTest
{
 static void Main()
 {
 Point myPoint = new Point(2, 3);
 Console.WriteLine("The X coordinate is: " + myPoint.X);
 Console.WriteLine("The Y coordinate is: " + myPoint.Y);
 }
}

Chapter 14. Defining Classes 559

The above example declares a class Point with two automatic properties: X

and Y. These properties do not have explicitly defined underlying fields and

the compiler defines them during the compilation. It looks like the get and

set methods are empty but in fact the compiler defines an underlying field

and fills the body of the get and set accessors with some code to read / write

the automatically defined underlying field.

Use automatic properties for simple classes where you want to write less

code but have in mind that when you use automatic properties your control

over the assigned values is limited. You might have difficulties to add checks

for invalid data.

Types of Properties

Depending on their definition we can classify the properties as follows:

1. Read-only, i.e. these properties have only a get method as shown by

the area of the rectangle.

2. Write-only, i.e. these properties have only a set method, but no

method for reading the value of the property.

3. And the most common case is read-write, where the property has

methods both for reading and for changing the value.

Some properties are designed to be read-only. Others are supposed to

support both read and write operations. The developers should decide

whether someone should be able to change the value of given property and

define it as read-only or read / write. Write-only properties are used very

rarely.

Static Classes and Static Members

We call an element static when it is declared with the modifier static. In C#

we can declare fields, methods, properties, constructors and classes as static.

We will first consider the static elements of a class or in other words we will

look at the fields, methods, properties and constructors of a class and then we

will study the concept of the static class.

What the Static Elements Are Used For?

Before we study the working principle of the static elements, let’s see the

reasons why we need to use them.

Method to Sum Two Numbers

Let’s imagine that we have a class with a single method that always works in

the same manner. For example, its task is to get two numbers and return

their sum as a result. In this scenario there is no matter exactly which object

of that class is going to implement that method since it will always do the

same thing – adding two numbers together, independent of the calling object.

560 Fundamentals of Computer Programming with C#

In practice the behavior of the method does not depend of the object

state (the values in the object field). So why the need to create an object to

accomplish that method provided that the method does not depend on any of

the objects of that class? Why not just get the class to implement that

method?

Instance Counter for Given Class

Consider a different scenario. Let’s say we want to keep in our program the

current number of objects, which have been created by a given class. How will

we keep that variable, which stores the number of created objects?

As we know, we will not be able to store the variable as a class field because

for each created object there will be created a copy of that field, initialized

with default value. Every single object will store its own field for indication of

the number of objects and the objects will not be able to share information.

It looks like the counter should be outside a class field rather than inside it. In

the following subsections we will find out how to deal with such a problem.

What Is a Static Member?

Formally speaking, a static member of the class is every field, property,

method or other member, which has a static modifier in its declaration1. That

means that fields, methods and properties, marked as static, belong to the

particular class rather than to any particular object of the given class.

Therefore, when we mark a field, method or property as static, we can use

them without creating any object of the given class. All we need is to have

access (visibility) to the class so that we can call the object’s static methods

or its static fields and properties.

Static elements of the class can be used without creating an

object of the given class.

On the other hand if we have created objects of the given class then its static

fields and properties will be shared and there will be only one copy of the

static field or property which will be shared among all objects of the given

class. Because of that reason in the VB.NET language we have the keyword

shared instead of the static keyword.

Static Fields

When we create objects from a given class, each of them holds different

values in its fields. For example, consider again the class Dog:

public class Dog
{
 // Instance variables
 private string name;

Chapter 14. Defining Classes 561

 private int age;
}

There are two fields in the class, one for the name – name and another one for

the age – age. Every object, each of these fields, has its own value, which is

stored in a different place in the memory for every object.

Sometimes, however, we want to have common fields for all objects of a

given class. To achieve that, we have to use the static modifier in the field

declarations. As we already said, such fields are called static fields. In the

literature they are also called class variables.

We say that the static fields are class associated, rather than associated

with any object from the particular class. That means that all objects, created

by the description of a class share the static fields of the class.

All objects, created by the description of a given class (that

is, instances of a given class), share the static fields of the

class.

Declaration of Static Fields

The static fields are declared the same way as the class fields. If there is

access modifier, the keyword static should be added after it.

[<access_modifier>] static <field_type> <field_name>

Here is how a field named dogCount would look like. The field stores

information about the count of the created objects from the class Dog:

Dog.cs

public class Dog
{
 // Static (class) variable
 static int dogCount;

 // Instance variables
 private string name;
 private int age;
}

The static fields are created when we try to access them for the first time

(read / modify). After their creation they are initialized with their default

values of their types.

562 Fundamentals of Computer Programming with C#

Initialization during Declaration

If during the static field declaration we set an initialization value, it will be

assigned to the particular static field. The initialization executes only once

when the field is accessed for the first time right after the assignment has

finished. The next time when the field is accessed that field initialization will

not execute.

We can append the static field initialization in the example above:

// Static variable – declaration and initialization
static int dogCount = 0;

This initialization will complete during the first invocation to the static field.

When we access some static field, an amount of memory will be reserved for

it and it will be initialized with its default values. If the field has initialization

during declaration (like it is in our case with the dogCount field) this

initialization will execute. If we try later to access the field from other part of

our program this process will not repeat, because the static field already

exists and is initialized.

Accessing Static Fields

In contrast to the common (non-static) class fields, the static fields that are

associated with the particular class can be accessed through an external class.

In order to do that we need to put a "dot" notation this way:

<class_name>.<static_field_name>

For example, if we want to print the value of the static field that holds the

number of created objects of our class Dog we should do that:

static void Main()
{
 // Access to the static variable through class name
 Console.WriteLine("Dog count is now " + Dog.dogCount);
}

The result of the Main() method is:

Dog count is now 0

If we have a method in the class, which is defined as a static field, we can

access it directly without the class name, because it is known by default.

<static_field_name>

Chapter 14. Defining Classes 563

Modification of the Static Field Values

As we said before, the static variables are shared between all objects of

the class and do not belong to any object of the particular class. That way any

object can access and modify the static field values and in the same time

other objects can “see” the modified values.

That’s why if we want to count the number of created objects of the class Dog,

we should use a static field and increment it by one every time the

constructor is invoked, i.e. every time we create and object of our class.

public Dog(string name, int age)
{
 this.name = name;
 this.age = age;

 // Modifying the static counter in the constructor
 Dog.dogCount += 1;
}

We access static field from the class Dog so we can use the following code in

order to access the field dogCount:

public Dog(string name, int age)
{
 this.name = name;
 this.age = age;

 // Modifying the static counter in the constructor
 dogCount += 1;
}

The first way is preferable, it is clear that the field in the class Dog is static.

The code is more readable.

Let’s create some objects of the class Dog and print out their number in order

to check if we are right:

static void Main()
{
 Dog dog1 = new Dog("Jackie", 1);
 Dog dog2 = new Dog("Lassy", 2);
 Dog dog3 = new Dog("Rex", 3);

 // Access to the static variable
 Console.WriteLine("Dog count is now " + Dog.dogCount);
}

564 Fundamentals of Computer Programming with C#

The output of the example is:

Dog count is now 3

Constants

Before we finish with the static fields we should get familiar with one more

specific type of static fields.

Like the constants of mathematics, in C# special fields of a class called

constants can be created. Once declared and initialized constants always

have the same value for all objects of a particular type.

In C# constants are of two types:

1. Constants the values of which are extracted during the compilation of

the program (compile-time constants).

2. Constants the values of which are extracted during the execution of the

program (run-time constants).

Compile-Time Constants (const)

Constants, which are calculated at compile time (compile-time constants), are

declared as follows, using modifier const:

[<access_modifiers>] const <type> <name>;

Constants, which are declared with special word const, are static fields.

Nevertheless, the use of modifier static is not required (nor allowed by the

compiler) in their declaration.

Although the constants declared with a modifier const are

static fields, they must not and cannot use the static

modifier in their declaration.

For example, if we want to declare as a constant the number "PI", which is

known to us from mathematics, this can be done as follows:

public const double PI = 3.141592653589793;

The value we assign to a particular constant can be an expression, which has

to be calculated by the compiler at compile time. For example, as we know

from mathematics, the constant "PI" can be represented as the approximate

result of the division of numbers 22 and 7:

public const double PI = 22d / 7;

When we try to print the value of the constant:

Chapter 14. Defining Classes 565

static void Main()
{
 Console.WriteLine("The value of PI is: " + PI);
}

The command line will display:

The value of PI is: 3.14285714285714

If we do not give a value to a constant at its declaration, but later, we will get

a compilation error. For example, if we take the example of the constant PI,

we first declare the constant and later try to give it a value:

public const double PI;

// … вome code …

public void SetPiValue()
{
 // Attempting to initialize the constant PI
 PI = 3.141592653589793;
}

The compiler will issue an error like this one, indicating the line, where the

constant is declared:

A const field requires a value to be provided

Let’s pay attention, again:

Constants declared with modifier const must be initialized at

the moment of their declaration.

Assigning Constant Values at Runtime

Having learned how to declare constants that are being initialized at compile

time, let’s consider the following example: we want to create a class for color

(Color). We will use the so-called Red-Green-Blue (RGB) color model,

according to which, each color is represented by mixing the three primary

colors – red, green and blue. These three primary colors are represented as

three integers in the range from 0 to 255. For example, black is represented

as (0, 0, 0), white as (255, 255, 255), blue – (0, 0, 255) etc.

In our class we declare three integer fields for red, green and blue light and a

constructor that accepts values for each of them:

566 Fundamentals of Computer Programming with C#

Color.cs

class Color
{
 private int red;
 private int green;
 private int blue;

 public Color(int red, int green, int blue)
 {
 this.red = red;
 this.green = green;
 this.blue = blue;
 }
}

As some colors are used more frequently than others (for example, black and

white) we can declare constants for them, with the idea that the users of

our class will take them for granted, instead of creating their own objects for

these particular colors every time. To do this, we modify the code of our class

as follows, adding the declaration of the following color-constants:

Color.cs

class Color
{
 public const Color Black = new Color(0, 0, 0);
 public const Color White = new Color(255, 255, 255);

 private int red;
 private int green;
 private int blue;

 public Color(int red, int green, int blue)
 {
 this.red = red;
 this.green = green;
 this.blue = blue;
 }
}

Strangely, when we try to compile, we get the following error:

'Color.Black' is of type 'Color'. A const field of a reference
type other than string can only be initialized with null.

Chapter 14. Defining Classes 567

'Color.White' is of type 'Color'. A const field of a reference
type other than string can only be initialized with null.

This is so because in C#, constants, declared with the modifier const, can be

only of the following types:

1. Primitive types: sbyte, byte, short, ushort, int, uint, long, ulong,

char, float, double, decimal, bool.

2. Enumerated types (discussed in section "Enumerations" at the end of

this chapter).

3. Reference types (mostly the type string).

The problem with the compilation of the class in our example is connected

with the reference types and the restriction on the compiler not to allow

simultaneous use of the operator new when declaring a constant when this

constant is declared with the modifier const, unless the reference type can be

calculated at compile time.

As we can guess, the only reference type, which can be calculated at compile

time while using the operator new is string.

Therefore, the only possibilities for reference type constants that are declared

with modifier const are, as follows:

1. The constants must be of type string.

2. The value, which we assign to the constant of reference type, other than

string, is null.

We can formulate the following definition:

Constants declared with modifier const must be of primitive,

enumeration or reference type, and if they are of reference

type, this type must be either a string or the value, that we

assign to the constant, must be null.

Thus, using the modifier const, we will not be able to declare the constants

Black and White of type Color in our color class because they aren’t null.

The next section will show us how to deal with this problem.

Runtime Constants (readonly)

When we want to declare reference type constants, which cannot be

calculated during compilation of the program, we must use a combination of

static readonly modifiers, instead of const modifier.

[<access_modifiers>] static readonly <reference-type> <name>;

568 Fundamentals of Computer Programming with C#

Accordingly, <reference-type> is a type the value of which cannot be

calculated at compilation time.

The compilation is successful if we replace const by static readonly in the

last example of the previous section:

public static readonly Color Black = new Color(0, 0, 0);
public static readonly Color White = new Color(255, 255, 255);

Naming the Constants

The constants names in C# follow the PascalCase rule according to the

Microsoft’s official C# coding convention. If the constant is composed of

several words, each new word after the first one begins with a capital letter.

Here are some examples of correctly named constants:

// The base of the natural logarithms (approximate value)
public const double E = 2.718281828459045;
public const double PI = 3.141592653589793;
public const char PathSeparator = '/';
public const string BigCoffee = "big coffee";
public const int MaxValue = 2147483647;
public static readonly Color DeepSkyBlue = new Color(0,104,139);

Sometimes naming in style ALL-CAPS is used but it is not officially supported

by the Microsoft code conventions, even though it is widely distributed in

programming:

public const double FONT_SIZE_IN_POINTS = 14; // 14pt font size

The examples made it clear that the difference between const and static
readonly fields is in the moment of their value assignments. The compile-

time constants (const) must be initialized at the moment of declaration, while

the run-time constants (static readonly) can be initialized at a later stage,

for example in one of the constructors of the class in which they are defined.

Using Constants

Constants are used in programming to avoid repetition of numbers,

strings or other common values (literals) in the program and to enable

them to change easily. The use of constants instead of brutally hardcoded

repeating values facilitates readability and maintenance of the code and is

highly recommended practice. According to some authors all literals other

than 0, 1, -1, empty string, true, false and null must be declared as

constants, but this can make it difficult to read and maintain the code instead

of making it simple. Therefore, it is believed that values, which occur more

than once in the program or are likely to change over time, must be

declared as constants.

Chapter 14. Defining Classes 569

In the chapter "High-Quality Programming Code" will we learn in details when

and how to use constants efficiently.

Static Methods

Like static fields, we declare a method as static if we want it to be associated

only with the class and not with a particular class object.

Declaration of Static Methods

To declare a static method syntactically means that we must add the

keyword static in the method’s declaration:

[<access_modifier>] static <return_type> <method_name>()

Let’s for example declare the method of summing two numbers, which we

discussed at the beginning of this section:

public static int Add(int number1, int number2)
{
 return (number1 + number2);
}

Accessing Static Methods

Like static fields, static methods can be accessed with the "dot" notation

(the dot operator) applied to the name of the class and the class name can be

skipped if the calling is performed by the same class, in which the static

method is declared. Here is an example of calling the static method Addſ…ƀ:

static void Main()
{
 // Call the static method through its class
 int sum = MyMathClass.Add(3, 5);

 Console.WriteLine(sum);
}

Access between Static and Non-Static Members

In most cases static methods are used to access static fields in the class

they have been defined. For example, if we want to declare a method, which

returns the number of the created objects of the Dog class, it must be static,

because our counter will be static too:

public static int GetDogCount()
{

570 Fundamentals of Computer Programming with C#

 return dogCount;
}

But when we examine how static and non-static methods and fields can be

accessed, not all combinations are allowed.

Accessing Non-Static Members from Non-Static Method

Non-static methods can access non-static fields and other non-static methods

of the class. For example, in the Dog class we can declare method

PrintInfo(), which displays information about our dog:

Dog.cs

public class Dog
{
 // Static variable
 static int dogCount;

 // Instance variables
 private string name;
 private int age;

 public Dog(string name, int age)
 {
 this.name = name;
 this.age = age;

 dogCount += 1;
 }

 public void Bark()
 {
 Console.Write("wow-wow");
 }

 // Non-static (instance) method
 public void PrintInfo()
 {
 // Accessing instance variables – name and age
 Console.Write("Dog's name: " + this.name + "; age: "
 + this.age + "; often says: ");

 // Calling instance method
 this.Bark();

Chapter 14. Defining Classes 571

 }
}

Of course, if we create an object of the Dog class and call his PrintInfo()

method:

static void Main()
{
 Dog dog = new Dog("Doggy", 1);
 dog.PrintInfo();
}

The result will be the following:

Dog's name: Doggy; age: 1; often says: wow-wow

Accessing Static Elements from Non-Static Method

We can access static fields and static methods of the class from non-static

method. As we learned earlier, this is because static methods and variables

are bound by class, rather than a specific method and the static elements can

be accessed from any object of the class, even of external classes (as long as

they are visible to them).

For example:

Circle.cs

public class Circle
{
 public static double PI = 3.141592653589793;

 private double radius;

 public Circle(double radius)
 {
 this.radius = radius;
 }

 public static double CalculateSurface(double radius)
 {
 return (PI * radius * radius);
 }

 public void PrintSurface()
 {

572 Fundamentals of Computer Programming with C#

 double surface = CalculateSurface(radius);
 Console.WriteLine("Circle's surface is: " + surface);
 }
}

In the example, we provide access to the value of the static field PI of the

non-static method PrintSurface(), by calling the static method

CalculateSurface(). Let’s try to call this non-static method:

static void Main()
{
 Circle circle = new Circle(3);
 circle.PrintSurface();
}

After the compilation and the execution, the following result will be printed on

the console:

Circle's surface is: 28.2743338823081

Accessing Static Elements of the Class from Static Method

We can call a static method or static field of the class from another static

method without any problems.

For example, let’s consider our class for mathematical calculations. We have

declared the constant PI, in it. We can declare a static method for finding the

length of the circle (the formula for finding perimeter of a circle is ɩπr, where

r is the radius of the circle), that uses the constant PI for calculating the

perimeter of a circle. Then, to show that static method can call another static

method, we can call the static method for finding the perimeter of a circle

from the static method Main():

MyMathClass.cs

public class MyMathClass
{
 public const double PI = 3.141592653589793;

 // The method applies the formula: P = 2 * PI * r
 static double CalculateCirclePerimeter(double r)
 {
 // Accessing the static variable PI from static method
 return (2 * PI * r);
 }

Chapter 14. Defining Classes 573

 static void Main()
 {
 double radius = 5;

 // Accessing static method from other static method
 double circlePerimeter = CalculateCirclePerimeter(radius);

 Console.WriteLine("Circle with radius " + radius +
 " has perimeter: " + circlePerimeter);
 }
}

The code is compiled without errors and displays the following output:

Circle with radius 5.0 has perimeter: 31.4159265358979

Accessing Non-Static Elements from Static Method

Let’s look at the most interesting case of a combination of accessing non-

static and static elements of the class – accessing non-static elements

form a static method.

We should know that from static method we can neither access non-static

fields, nor call non-static methods. This is because static methods are bound

to the class and do not “know” any object of the class. Therefore, the keyword
this cannot be used in static methods – it is bound to a specific instance of

the class. When we try to access non-static elements of the class (fields or

methods) from static method, we will always get a compilation error.

Unauthorized Access to Non-Static Field – Example

If in our class Dog we try to declare a static method PrintName(), which

returns as a result the value of the non-static field name declared in the class:

public static void PrintName()
{
 // Trying to access non-static variable from static method
 Console.WriteLine(name); // INVALID
}

Accordingly, the compiler will respond with an error message:

An object reference is required for the non-static field,
method, or property 'Dog.name'

If we try to access the field in the method, via the keyword this:

574 Fundamentals of Computer Programming with C#

public void string PrintName()
{
 // Trying to access non-static variable from static method
 Console.WriteLine(this.name); // INVALID
}

The compiler will still not be satisfied and this time will fail to compile the

class and will display the following message:

Keyword 'this' is not valid in a static property, static method,
or static field initializer

Illegal Call of Non-Static Method from Static Method – Example

Now we will try to call non-static method from static method. Let declare in

our class Dog, the non-static method PrintAge(), which prints the value of

the field age:

public void PrintAge()
{
 Console.WriteLine(this.age);
}

Accordingly, let’s try from the method Main(), which we declare in the class

Dog, to call this method without creating an object of our class:

static void Main()
{
 // Attempt to invoke non-static method from a static context
 PrintAge(); // INVALID
}

When we try to compile we will get the following error:

An object reference is required for the non-static field,
method, or property 'Dog.PrintAge()'

The result is similar, if we try to cheat the compiler, trying to call the method

via the keyword this:

static void Main()
{
 // Attempt to invoke non-static method from a static context
 this.PrintAge(); // INVALID
}

Chapter 14. Defining Classes 575

Accordingly, as with the attempt to access the non-static field of a static

method using the keyword this, the compiler displays the following error

message and fails to compile our class:

Keyword 'this' is not valid in a static property, static method,
or static field initializer

From the examples, we can make the following conclusion:

Non-static elements of the class may NOT be used in a static

context.

The problem with the access to non-static elements of the class of static

method has a single solution – these non-static elements are accessed by

reference to an object:

static void Main()
{
 Dog myDog = new Dog("Lassie", 2);
 string myDogName = myDog.name;
 Console.WriteLine("My dog \"" + myDogName +"\" has age of ");
 myDog.PrintAge();
 Console.WriteLine("years");
}

Accordingly, this code is compiled and the result is:

My dog "Lassie" has age of 2 years

Static Properties of the Class

Although rare, it is sometimes convenient to use and declare not the object

characteristics, but the ones of the class. They possess the same

characteristics like the properties related to the particular object of a

particular class, which we discussed above, but with the difference that the

static properties refer to the class (not its objects).

As we can guess, all we need to do to turn a simple property into a static one,

is to add the static keyword in its declaration.

The static properties are declared as follows:

[<modifiers>] static <property_type> <property_name>
{
 // … Property's accessors methods go here
}

576 Fundamentals of Computer Programming with C#

Let’s consider an example. We have a class that describes a system. We can

create many objects from it, but the model of the system has a version and a

vendor, which are common to all instances created from this class. We can

make the version and the vendors as static properties of the class:

SystemInfo.cs

public class SystemInfo
{
 private static double version = 0.1;
 private static string vendor = "Microsoft";

 // The "version" static property
 public static double Version
 {
 get { return version; }
 set { version = value; }
 }

 // The "vendor" static property
 public static string Vendor
 {
 get { return vendor; }
 set { vendor = value; }
 }

 // … More ſnonƀstatic code here …
}

In this example we have chosen to keep the value of static properties in static

variables (which are logical, since they are bound only to the class). The

properties that we consider are Version and Vendor, respectively. For each of

them we have created static methods for reading and modification. Thus, all

objects of this class will be able to retrieve the current version and vendor of

the system, which describes the class. Accordingly, if one day an upgrade of

the system version is done and the value becomes 0.2, as a result each

object will receive the new version by accessing the class property.

Static Properties and the Keyword “this”

Like static methods, the keyword this cannot be used in the static properties,

as the static property is associated only with the class and does not

“recognize” objects of a class.

The keyword this cannot be used in static properties.

Chapter 14. Defining Classes 577

Accessing Static Properties

Like the static fields and methods, static properties can be accessed by "dot"

notation, applied only to the name of the class in which they are declared.

To be sure, let’s try to access the property Version through a variable of the

class SystemInfo:

static void Main()
{
 SystemInfo sysInfoInstance = new SystemInfo();
 Console.WriteLine("System version: " +
 sysInfoInstance.Version);
}

When we try to compile the above code, we get the following error message:

Member 'SystemInfo.Version.get' cannot be accessed with an
instance reference; qualify it with a type name instead

Accordingly, if we try to access the static properties through class name, the

code compiles and works correctly:

static void Main()
{
 // Invocation of static property setter
 SystemInfo.Vendor = "Microsoft Corporation";

 // Invocation of static property getters
 Console.WriteLine("System version: " + SystemInfo.Version);
 Console.WriteLine("System vendor: " + SystemInfo.Vendor);
}

The code is compiled and the result of its execution is:

System version: 0.1
System vendor: Microsoft Corporation

Before proceeding to the next section, let’s look at the printed value of the

property Vendor. It is "Microsoft Corporation", although we have initialized

it with the value "Microsoft" in the SystemInfo class. This is because we

changed the value of the property Vendor of the first line of the Main()

method, by calling its method of modification.

Static properties can be accessed only through dot notation,

applied to the name of the class in which they are declared.

578 Fundamentals of Computer Programming with C#

Static Classes

For complete understanding we have to explain that we can also declare

classes as static. Similar to static members, a class is static, when the

keyword static is used in its declaration.

[<modifiers>] static class <class_name>
{
 // … Class body goes here
}

When a class is declared as static, it is an indication that this class contains

only static members (i.e. static fields, methods, properties) and cannot be

instantiated.

The use of static classes is rare and most often associated with the use of

static methods and constants, which do not belong to any particular

object. For this reason, the details of static classes go beyond the scope of

this book. Curious reader can find more information on the site of the

Microsoft Developer Network (MSDN): http://msdn.microsoft.com/en-

us/library/79b3xss3.aspx.

Static Constructors

To finish the section on static class members, we should mention that classes

may also have static constructor (i.e. constructor that has the static

keyword in its declaration):

[<modifiers>] static <class_name>([<parameters_list>])
{
}

Static constructors can be declared both in static and in non-static classes.

They are executed only once when the first of the following two events

occurs for the first time:

1. An object of class is created.

2. A static element of the class is accessed (field, method, property).

Most often static constructors are used for initialization of static fields.

Static Constructor – Example

Consider an example for the use of a static constructor. We want to make

a class that quickly calculates the square root of an integer and returns the

whole part of the result, which is also an integer. Since calculating the square

root is a time-consuming mathematical operation involving calculations with

real numbers and calculating convergent series, it is a good idea these

calculations to be done once at program startup and then to use the already

http://msdn.microsoft.com/en-us/library/79b3xss3.aspx
http://msdn.microsoft.com/en-us/library/79b3xss3.aspx

Chapter 14. Defining Classes 579

calculated values. Of course, to make such pre-computing of all square

roots in a given range, we must first define this range and it should not be

too wide (e.g. from 1 to 1000). Then we need, at first request for a square

roots of a number, to recalculate all the square roots in this range and then to

return the already calculated value. Upon a following request for a square

root, all values in this range will have already been calculated and returned

directly. If the program is never required to calculate the square root,

preliminary calculations should not be fulfilled at all.

Through the described process initially some CPU time is invested for

preliminary calculations, but then the extraction of the square root later is

done very quickly. If we have multiple calculations of the square root, the

pre-calculation will significantly increase the performance.

All this can be implemented in one static class with a static constructor,

in which the square roots will be recalculated. The results, which have already

been calculated, can be stored in a static array. A static method can be

used to extract the already pre-calculated value. Since the preliminary

calculations are being performed in the static constructor, if the class for pre-

calculated square roots is not used, they will not be executed and CPU time

and memory will be saved.

This is how the implementation might look like:

static class SqrtPrecalculated
{
 public const int MaxValue = 1000;

 // Static field
 private static int[] sqrtValues;

 // Static constructor
 static SqrtPrecalculated()
 {
 sqrtValues = new int[MaxValue + 1];
 for (int i = 0; i < sqrtValues.Length; i++)
 {
 sqrtValues[i] = (int)Math.Sqrt(i);
 }
 }

 // Static method
 public static int GetSqrt(int value)
 {
 if ((value < 0) || (value > MaxValue))
 {
 throw new ArgumentOutOfRangeException(String.Format(

580 Fundamentals of Computer Programming with C#

 "The argument should be in range [0...{0}].",
 MaxValue));
 }
 return sqrtValues[value];
 }
}

class SqrtTest
{
 static void Main()
 {
 Console.WriteLine(SqrtPrecalculated.GetSqrt(254));
 // Result: 15
 }
}

Structures

In C# and .NET Framework there are two implementations of the concept of

"class" from the object-oriented programming: classes and structures.

Classes are defined through the keyword class while the structures are

defined through the keyword struct. The main difference between a

structure and a class is that:

- Classes are reference types (references to some address in the heap

which holds their members).

- Structures (structs) are value types (they directly hold their

members in the program execution stack).

Structure (struct) – Example

Let’s define a structure to hold a point in the 2D space, similar to the class

Point defined in the section "Example of Encapsulation":

Point2D.cs

struct Point2D
{
 private double x;
 private double y;

 public Point2D(int x, int y)
 {
 this.x = x;
 this.y = y;

Chapter 14. Defining Classes 581

 }

 public double X
 {
 get { return this.x; }
 set { this.x = value; }
 }

 public double Y
 {
 get { return this.y; }
 set { this.y = value; }
 }
}

The only difference is that now we defined Point2D as struct, not as class.

Point2D is a structure, a value type, so its instances behave like int and

double. They are value types (not objects), which means they cannot be null

and they are passed by value when taken as a method parameters.

Structures are Value Types

Unlike classes, the structures are value types. To illustrate this we will play

a bit with the Point2D structure:

class PlayWithPoints
{
 static void PrintPoint(Point2D p)
 {
 Console.WriteLine("({0},{1})", p.X, p.Y);
 }

 static void TryToChangePoint(Point2D p)
 {
 p.X++;
 p.Y++;
 }

 static void Main()
 {
 Point2D point = new Point2D(3, -2);
 PrintPoint(point);
 TryToChangePoint(point);
 PrintPoint(point);
 }

582 Fundamentals of Computer Programming with C#

}

If we run the above example, the result will be as follows:

(3,-2)
(3,-2)

Obviously the structures are value types and when passed as parameters

to a method their fields are copied (just like int parameters) and when

changed inside the method, the change affects only the copy, not the original.

This can be illustrated by the next few figures.

First, the point variable is created which holds a value of (3, -2):

Next, the method TryToChangePoint(Point2D p) is called and it copies the

value of the variable point into another place in the stack, allocated for

the parameter p of the method. When the parameter p is changed in the

method’s body, it is modified in the stack and this does not affect the

original variable point which was previously passed as argument when

calling the method:

HeapStack

3

point

Point2D instance

(nothing is stored

in the heap)
-2

HeapStack

3

point

Point2D instance

(nothing is stored

in the heap)
-2

4

p

Point2D (copy)

-1

Chapter 14. Defining Classes 583

If we change Point2D from struct to class, the result will be very different:

(3,-2)
(4,-1)

This is because the variable point will be now passed by reference (not by

value) and its value will be shared between point and p in the heap. The

figure below illustrates what happens in the memory at the end of the method

TryToChangePoint(Point2D p) when Point2D is a class:

Class or Structure?

How to decide when to use a class and when a structure? We will give

you some general guidelines.

Use structures to hold simple data structures consisting of few fields that

come together. Examples are coordinates, sizes, locations, colors, etc.

Structures are not supposed to have functionality inside (no methods except

simple ones like ToString() and comparators). Use structures for small data

structures consisting of set of fields that should be passed by value.

Use classes for more complex scenarios where you combine data and

programming logic into a class. If you have logic, use a class. If you have

more than few simple fields, use a class. If you need to pass variables by

reference, use a class. If you need to assign a null value, prefer using a

class. If you prefer working with a reference type, use a class.

Classes are used more often than structures. Use structs as exception, and

only if you know well what are you doing!

There are few other differences between class and structure in addition

that classes are reference types and structures are values types, but we will

not going to discuss them. For more details refer to the following article in

MSDN: http://msdn.microsoft.com/en-us/library/ms173109.aspx.

HeapStack

point (reference variable)

Point2D@a8fe24

3 -2

Point2D object
p (parameter by reference)

Point2D@a8fe24

http://msdn.microsoft.com/en-us/library/ms173109.aspx

584 Fundamentals of Computer Programming with C#

Enumerations

Earlier in this chapter we discussed what constants are, how to declare and

use them. In this connection we will now consider a part of the C# language,

in which a variety of logically connected constants can be linked by means of

language. These language constructs are the so-called enumerated types.

Declaration of Enumerations

Enumeration is a structure, which resembles a class but differs from it in

that in the class body we can declare only constants. Enumerations can

take values only from the constants listed in the type. An enumerated variable

can have as a value one of the listed in the type constants but cannot have

value null.

Formally speaking, the enumerations can be declared using the reserved word

enum instead of class:

[<modifiers>] enum <enum_name>
{
 constant1 [, constant2 [, [, … [, constantN]]
}

Under <modifiers> we understand the access modifiers public, internal

and private. The identifier <enum_name> follows the rules for class names in

C#. Constants separated by commas are declared in the enumeration block.

Consider an example. Let’s define an enumeration for the days of the week

(we will call it Days). As we can guess, the constants that will appear in this

particular enumeration are the names of the week days:

Days.cs

enum Days
{
 Mon, Tue, Wed, Thu, Fri, Sat, Sun
}

Naming of constants in one particular enumeration follows the same principles

of naming of which we already explained in the "Naming Constants" section.

Note that each of the constants listed in the enumeration is of type this

enumeration, i.e. in our case Mon belongs to type Days, as well as each of the

other constants.

In other words, if we execute the following line:

Console.WriteLine(Days.Mon is Days);

Chapter 14. Defining Classes 585

This will be printed as a result:

True

Let’s repeat again:

The enumerations are a set of constants of type – this listed

type.

Nature of Enumerations

Each constant, which is declared in one enumeration, is being associated with

a certain integer. By default, for this hidden integer representation of

constants in one enumeration int is being used.

To show “the integer nature” of constants in the listed types let’s try to

figure out what’s the numerical representation of the constant, which

corresponds to “Monday” from the example of the previous subsection:

int mondayValue = (int)Days.Mon;
Console.WriteLine(mondayValue);

After we execute it, the result will be:

0

The values, associated with constants of a particular enumerated type by

default are the indices in the list of constants of this type, i.e. numbers from 0

to the number of constants in the type less 1. In this way, if we consider the

example with the enumeration type for the week days, used in the previous

subsection, the constant Mon is associated with the numerical value 0, the

constant Tue with the integer value 1, Wed – with 2, etc.

Each constant in one enumeration is actually a textual

representation of an integer. By default this number is the

constant’s index in the list of constants of a particular

enumeration type.

Despite the integer nature of constants in a particular enumeration, when we

try to print a particular constant, its textual representation at the time of the

constant’s declaration will be printed:

Console.WriteLine(Days.Mon);

After we execute the code above we will get the following result:

Mon

586 Fundamentals of Computer Programming with C#

Hidden Numerical Value of Constants in Enumeration

As we can guess it is possible to change the numerical value of constants

in an enumeration. This is done when we assign the values we prefer to

each of the constants at the time of declaration.

[<modifiers>] enum <enum_name>
{
 constant1[=value1] [, constant2[=value2] [, …]]
}

Accordingly value1, value2, etc. must be integers.

To get a clearer idea of the given definition consider the following example:

let’s have a class Coffee, which represents a cup of coffee that customers

order in a coffee shop:

Coffee.cs

public class Coffee
{
 public Coffee()
 {
 }
}

In this facility customers can order different amounts of coffee, as the coffee

machine has predefined values “small” – млл ml, “normal” – 150 ml and

“double” – 300 ml. Therefore, we can declare one enumeration CoffeeSize,

which has respectively three constants – Small, Normal and Double, the

correspondent qualities of which will be assigned:

CoffeeSize.cs

public enum CoffeeSize
{
 Small=100, Normal=150, Double=300
}

Now we can add a field and property to the class Coffee, which reflect the

type of coffee the customer has ordered:

Coffee.cs

public class Coffee
{
 public CoffeeSize size;

Chapter 14. Defining Classes 587

 public Coffee(CoffeeSize size)
 {
 this.size = size;
 }

 public CoffeeSize Size
 {
 get { return size; }
 }
}

Let’s try to print the values of the coffee quantity for a normal and for one

double coffee:

static void Main()
{
 Coffee normalCoffee = new Coffee(CoffeeSize.Normal);
 Coffee doubleCoffee = new Coffee(CoffeeSize.Double);

 Console.WriteLine("The {0} coffee is {1} ml.",
 normalCoffee.Size, (int)normalCoffee.Size);
 Console.WriteLine("The {0} coffee is {1} ml.",
 doubleCoffee.Size, (int)doubleCoffee.Size);
}

As we compile and execute this method, the following will be printed:

The Normal coffee is 150 ml.
The Double coffee is 300 ml.

Use of Enumerations

The main purpose of the enumerations is to replace the numeric values,

which we would use, if there were no enumeration types. In this way the code

becomes simpler and easier to read.

Another very important application of the enumerations is the pressure

exercised by the compiler to use constants from the enumerations and not

just numbers. Thus we minimize future errors in the code. For example, if we

use an int variable instead of a variable from enumerations and a set of

constants for the valid values, nothing prevents us from assigning the variable

any value, e.g. -6723.

To make this clearer, consider the following example: create a class "coffee

price calculator", which is calculating the price of each type of coffee,

offered in the coffee shop:

588 Fundamentals of Computer Programming with C#

PriceCalculator.cs

public class PriceCalculator
{
 public const int SmallCoffeeQuantity = 100;
 public const int NormalCoffeeQuantity = 150;
 public const int DoubleCoffeeQuantity = 300;

 public CashMachine() { }

 public double CalcPrice(int quantity)
 {
 switch (quantity)
 {
 case SmallCoffeeQuantity:
 return 0.20;
 case NormalCoffeeQuantity:
 return 0.30;
 case DoubleCoffeeQuantity:
 return 0.60;
 default:
 throw new InvalidOperationException(
 "Unsupported coffee quantity: " + quantity);
 }
 }
}

We have three constants for the capacity of the coffee cups in the coffee

shop, respectively 100, 150 and 300 ml. Furthermore, we expect that users

of our class will diligently use the defined constants, instead of numbers –

SmallCoffeeQuantity, NormalCoffeeQuantity and DoubleCoffeeQuantity.

The method CalcPrice(int) returns the respective price, calculating it by

the submitted amount.

The problem lies in the fact that someone may decide not to use the

constants defined by us and may submit an invalid number as a parameter of

our method, for example: -1 or 101. In this case, if the method does not

check for invalid quantity, it will likely return a wrong price, which is incorrect

behavior.

To avoid this problem we will use one feature of these enumerations, namely

constants in the enumeration type can be used in switch-case structures.

They can be submitted as values of the operator switch and accordingly – as

operands of the operator case.

Chapter 14. Defining Classes 589

The constants of enumerations can be used in switch-case

structures.

Let’s rework the method, which calculates the price for a cup of coffee,

depending on the capacity of the cup. This time we will use the enumeration

type CoffeeSize, which we declared in previous examples:

public double CalcPrice(CoffeeSize coffeeSize)
{
 switch (coffeeSize)
 {
 case CoffeeSize.Small:
 return 0.20;
 case CoffeeSize.Normal:
 return 0.40;
 case CoffeeSize.Double:
 return 0.60;
 default:
 throw new InvalidOperationException(
 "Unsupported coffee quantity: " + (int)coffeeSize);
 }
}

As we can see in this example, the possibility for the users of our method to

provoke unexpected behavior of the method is negligible, because we force

them to use specific values which to be used as arguments, namely constants

of enumerated CoffeeSize type. This is one of the advantages of constants,

which are declared in enumeration types to constants declared in any class.

Whenever possible, use enumerations instead of set of

constants declared in a class.

Before we finish with the enumeration section we should mention that the

enumerations are to be used with caution when working with the switch-

case construct. For example, if one day the owner of the coffee shop buys

many big cups (mugs) for coffee, we will need to add a new constant in the

constant list of the enumeration CoffeeSize, which may be called, for

example, Overwhelming:

CoffeeSize.cs

public enum CoffeeSize
{
 Small=100, Normal=150, Double=300, Overwhelming=600
}

590 Fundamentals of Computer Programming with C#

When we try to calculate the coffee price with the new quantity, the method,

which calculates the price, will throw an exception, informing the user that

such amount of coffee is not available in the coffee shop.

What we should do to solve this problem is to add a new case-condition,

which reflects the new constant in the enumerated CoffeeSize type.

When we modify the list of constants in an existing

enumeration, we should be careful not to break the logic of

the code that already exists and uses the constants, declared

so far.

Inner Classes (Nested Classes)

In C# an inner (nested) class is called a class that is declared inside the

body of another class. Accordingly, the class that encloses the inner class is

called an outer class.

The main reason to declare one class into another are:

1. To better organize the code when working with objects in the real

world, among which have a special relationship and one cannot exist

without the other.

2. To hide a class in another class, so that the inner class cannot be

used outside the class wrapped it.

In general, inner classes are used rarely, because they complicate the

structure of the code and increase the nested levels.

Declaration of Inner Classes

The inner classes are declared in the same way as normal classes, but are

located within another class. Allowed modifiers in the declaration of the

class are:

1. public – an inner class is accessible from any assembly.

2. internal – an inner class is available in the current assembly, in which

is located the outer class.

3. private – access is restricted only to the class holding the inner class.

4. static – an inner class contains only static members.

There are four more permitted modifiers – abstract, protected, protected

internal, sealed and unsafe, which are outside the scope and subject of

this chapter and will not be considered here.

The keyword this to an inner class has relation only to the internal class, but

not to the outside. Fields of the outside class cannot be accessed using the

reference this. If necessary fields of the outer class can be accessed by the

Chapter 14. Defining Classes 591

internal, it needs in creating the internal class to submit a reference to an

outer class.

Static members (fields, methods, properties) of the outer class are

accessible from the inner class regardless of their level of access.

Inner Classes – Example

Consider the following example:

OuterClass.cs

public class OuterClass
{
 private string name;

 private OuterClass(string name)
 {
 this.name = name;
 }

 private class NestedClass
 {
 private string name;
 private OuterClass parent;

 public NestedClass(OuterClass parent, string name)
 {
 this.parent = parent;
 this.name = name;
 }

 public void PrintNames()
 {
 Console.WriteLine("Nested name: " + this.name);
 Console.WriteLine("Outer name: " + this.parent.name);
 }
 }

 static void Main()
 {
 OuterClass outerClass = new OuterClass("outer");
 NestedClass nestedClass = new
 OuterClass.NestedClass(outerClass, "nested");
 nestedClass.PrintNames();
 }
}

592 Fundamentals of Computer Programming with C#

In the example the outer class OuterClass defines into itself as a member

the class InnerClass. Non-static inner class methods have access to their

own body this as well as the instance of outside class parent (through

syntax this.parent, if the parent reference is added by the developer). In

the example while creating the inner class, parent reference is set to

constructor of the outer class.

If we run the above example, we will obtain the following result:

Nested name: nested
Outer name: outer

Usage of Inner Classes

Consider an example. Let’s have a class for car – Car. Each car has an engine

and doors. Unlike the car’s door, however, the engine makes no sense

regarded as being outside the car, because without it, the car cannot run, i.e.

we have composition (see the section "Class Diagrams: Composition" in the

chapter "Principles of Object-Oriented Programming").

When the connection between the two classes is a

composition, the class, which consequently is a part of

another class, is convenient to be declared as inner class.

Therefore, if you declare the class for a car: Car would be appropriate to

create an inner class Engine, which will reflect the appropriate concept for the

car engine:

Car.cs

class Car
{
 Door FrontRightDoor;
 Door FrontLeftDoor;
 Door RearRightDoor;
 Door RearLeftDoor;
 Engine engine;

 public Car()
 {
 engine = new Engine();
 engine.horsePower = 2000;
 }

 public class Engine
 {

Chapter 14. Defining Classes 593

 public int horsePower;
 }
}

Declare Enumeration in a Class

Before proceeding to the next section that refers to generic types, it should be

noticed, that sometimes enumeration should and can be declared within

a class in order of better encapsulation of the class.

For example, the enumeration of type CoffeeSize, we have created in the

previous section, can be declared inside the body of the class Coffee, thereby

it improves its encapsulation:

Coffee.cs

class Coffee
{
 // Enumeration declared inside a class
 public static enum CoffeeSize
 {
 Small = 100, Normal = 150, Double = 300
 }

 // Instance variable of enumerated type
 private CoffeeSize size;

 public Coffee(CoffeeSize size)
 {
 this.size = size;
 }

 public CoffeeSize Size
 {
 get { return size; }
 }
}

Respectively, the method for calculation of the price of coffee will be slightly

modified slightly:

public double CalcPrice(Coffee.CoffeeSize coffeeSize)
{
 switch (coffeeSize)
 {

594 Fundamentals of Computer Programming with C#

 case Coffee.CoffeeSize.Small:
 return 0.20;
 case Coffee.CoffeeSize.Normal:
 return 0.40;
 case Coffee.CoffeeSize.Double:
 return 0.60;
 default:
 throw new InvalidOperationException(
 "Unsupported coffee quantity: " + ((int)coffeeSize));
 }
}

Generics

In this section we will explain the concept of generic classes (generic data

types, generics). Before we begin, however, let’s look through an example

that will help us understand more easily the idea.

Shelter for Homeless Animals – Example

Let’s assume that we have two classes. A class Dog, which describes a dog:

Dog.cs

public class Dog
{
}

And let a class Cat, which describes a cat:

Cat.cs

public class Cat
{
}

Then we want to create a class that describes a shelter for homeless

animals – AnimalShelter. This class has a specific number of free cells,

which determines the number of animals, which could find refuge in the

shelter. The special feature of the class, that we want to create, is that it only

needs to accommodate animals of the same kind, in our case, dogs or cats

only, because the coexistence of different species is not always a good idea.

If we think about how to solve the task with the knowledge that we have until

here, we will come to the following conclusion – to ensure that our class will

contain elements only from one and the same type we need to use an array of

Chapter 14. Defining Classes 595

identical objects. These objects may be dogs, cats or simply instances of the

universal type object.

For instance, if we want to make a shelter for dogs, here is how our class

would look like:

AnimalsShelter.cs

public class AnimalShelter
{
 private const int DefaultPlacesCount = 20;

 private Dog[] animalList;
 private int usedPlaces;

 public AnimalShelter() : this(DefaultPlacesCount)
 {
 }

 public AnimalShelter(int placesCount)
 {
 this.animalList = new Dog[placesCount];
 this.usedPlaces = 0;
 }

 public void Shelter(Dog newAnimal)
 {
 if (this.usedPlaces >= this.animalList.Length)
 {
 throw new InvalidOperationException("Shelter is full.");
 }
 this.animalList[this.usedPlaces] = newAnimal;
 this.usedPlaces++;
 }

 public Dog Release(int index)
 {
 if (index < 0 || index >= this.usedPlaces)
 {
 throw new ArgumentOutOfRangeException(
 "Invalid cell index: " + index);
 }
 Dog releasedAnimal = this.animalList[index];
 for (int i = index; i < this.usedPlaces - 1; i++)
 {
 this.animalList[i] = this.animalList[i + 1];

596 Fundamentals of Computer Programming with C#

 }
 this.animalList[this.usedPlaces - 1] = null;
 this.usedPlaces--;

 return releasedAnimal;
 }
}

Shelter capacity (number of animals, which it is capable to accommodate) is

set when the object is created. By default it is the value of the constant

DefaultPlacesCount. We use the field usedPlaces to monitor the occupied

cells (at the same time we use it to index into the array for "pointing" to the

first space from left to right in the array).

We have created a method for adding a new dog into the shelter –

Shelter() and respectively for releasing from the shelter – Release(int).

The method Shelter() adds each new animal in the first free cell in the right

side of the array (if there is any free).

The method Release(int) accepts the number of cell from which the dog will

be released (i.e. the index number in the array, where it is stored a link to the

object of type Dog).

usedPlaces

Occupied

0

Occupied

1

Empty

2

Empty

3

Empty

4

usedPlacesusedPlaces

Occupied

0

Occupied

0

Occupied

1

Occupied

1

Empty

2

Empty

2

Empty

3

Empty

3

Empty

4

Empty

4

usedPlaces

Empty

4

Occupied

0

Occupied

1

Occupied

2

Occupied

3

release usedPlacesusedPlaces

Empty

4

Empty

4

Occupied

0

Occupied

0

Occupied

1

Occupied

1

Occupied

2

Occupied

2

Occupied

3

Occupied

3

releaserelease

Chapter 14. Defining Classes 597

Then it moves all animals which are having a bigger cell number then the

current cell, from which we will release a dog, with a position to the left (steps

2 and 3 are shown in the diagram below).

Released cell at position usedPlaces-1 is marked as free, and a value null is

assigned to it. This provides release of the reference to it and respectively

allows the system to clean memory (garbage collector), to release the object

if it is not used anywhere else in the program at this moment. This prevents

from indirect loss of memory (memory leak).

Finally, it assigns the number of the last free cell to a usedPlaces field

(steps 4 and 5 of the scheme above).

It is visible that the “removal” of an animal from a cell could be a slow

operation, because it requires the transfer of all animals from the next cells

with one position left. In the chapter "Linear Data Structures" we will discuss

also more efficient ways of presenting the animal shelter, but for now let’s
focus on the topic about generic types.

So far we succeed implementing functionality of the shelter – the class

AnimalShelter. When we work with objects of type Dog, everything compiles

and executes smoothly:

usedPlaces

Empty

4

Occupied

0

Occupied

1

Occupied

2

Occupied

3

releasedAnimal

1

2 3 4
5

usedPlaces

Empty

4

Occupied

0

Occupied

1

Occupied

2

Occupied

3

releasedAnimal

1

2 3 4
5

usedPlaces

Empty

4

Occupied

0

Occupied

1

Occupied

2

Occupied

3

releasedAnimal

1

2 3 4
5

usedPlaces

Empty

4

Occupied

0

Occupied

1

Occupied

2

Occupied

3

releasedAnimal
usedPlacesusedPlaces

Empty

4

Empty

4

Occupied

0

Occupied

0

Occupied

1

Occupied

1

Occupied

2

Occupied

2

Occupied

3

Occupied

3

releasedAnimalreleasedAnimal

1

2 3 4
5

usedPlaces

Empty

4

Occupied

0

Occupied

1

Empty

3

Occupied

2

releasedAnimal
usedPlacesusedPlaces

Empty

4

Empty

4

Occupied

0

Occupied

0

Occupied

1

Occupied

1

Empty

3

Empty

3

Occupied

2

Occupied

2

releasedAnimalreleasedAnimal

598 Fundamentals of Computer Programming with C#

static void Main()
{
 AnimalShelter dogsShelter = new AnimalShelter(10);
 Dog dog1 = new Dog();
 Dog dog2 = new Dog();
 Dog dog3 = new Dog();

 dogsShelter.Shelter(dog1);
 dogsShelter.Shelter(dog2);
 dogsShelter.Shelter(dog3);

 dogsShelter.Release(1); // Releasing dog2
}

What happens, however, if we attempt to use an AnimalShelter class for

objects of type Cat:

static void Main()
{
 AnimalShelter dogsShelter = new AnimalShelter(10);

 Cat cat1 = new Cat();

 dogsShelter.Shelter(cat1);
}

As expected, the compiler displays an error:

The best overloaded method match for 'AnimalShelter.Shelter(
Dog)' has some invalid arguments. Argument 1: cannot convert
from 'Cat' to 'Dog'

Consequently, if we want to create a shelter for cats, we will not be able to

reuse the class that we already created, although the operations of adding

and removing animals from the shelter will be identical. Therefore, we have to

literally copy AnimalShelter class and change only the type of the objects,

which are handled – Cat.

Yes, but if we decide to make a shelter for other species? How many classes

of shelters for the particular type of animals we shall create?

We can see that this solution of the problem is not sufficiently

comprehensive and does not fully meets the terms, which we were set – to

exist a single class that describes our shelter for any kind of animal (i.e.

for all objects) and by working with it, it should contain only one kind of

animals (i.e. only objects of one and the same type).

Chapter 14. Defining Classes 599

We could use instead of the type Dog, the universal type object, which can

take values as Dog, Cat and all other data types, but this will create some

inconvenience, associated with the need to convert back from the object to

the Dog, when creating a shelter for dogs and it contains cells of type object,

instead of type Dog.

To solve the task efficiently, we have to use a feature of the C# language that

allows us to satisfy all required conditions simultaneously. It is called

generics (template classes).

What Is a Generic Class?

As we know if a method needs additional information to operate properly, this

information is passed to the method using parameters. During the execution

of the program, when calling this particular method, we pass arguments to

the method, which are assigned to its parameters and then used in the

method’s body.

Like the methods, when we know, that the functionality (actions)

encapsulated into a class, can be applied not only to objects of one, but to

many (heterogeneous) types, and these types are not known at the time of

declaring the class, we can use a functionality of the language C# called

generics (generic types).

It allows us to declare parameters of this class, by indicating an

unknown type that the class will work eventually with. Then, when we

instantiate our generic class, we replace the unknown with a particular.

Accordingly, the newly created object will only work with objects of this type

that we have assigned at its initialization. The specific type can be any data

type that the compiler recognizes, including class, structure, enumeration or

another generic class.

To get a cleaner picture of the nature of the generic types, let’s return to our

task from the previous section. As you might guess, the class that describes

the animal shelter (AnimalShelter) can operate with different types of

animals. Consequently, if we want to create a general solution of the task,

during the declaration of class AnimalShelter, we cannot know what type of

animals will be sheltered to shelter. This is sufficient indication, that we can

typify our class, adding to the declaration of the class as a parameter, the

unknown type of animals.

Later, when we want to create a dog’s shelter for example, this parameter of

the class will pass the name of our type – class Dog. Accordingly, if you create

a shelter for cats, we will pass the type Cat, etc.

Typifying a class (creating a generic class) means to add to

the declaration of a class a parameter (replacement) of

unknown type, which the class will use during its operation.

Subsequently, when the class is instantiated, this parameter

is replaced with the name of some specific type.

600 Fundamentals of Computer Programming with C#

In the following sections we will introduce the syntax of generic classes and

we will modify our previous example to use generics.

Declaration of Generic Class

Formally, the parameterizing of a class is done by adding <T> to the

declaration of the class, after its name, where T is the substitute (parameter)

of the type, which will be used later:

[<modifiers>] class <class_name><T>
{
}

It should be noticed that the characters '<' and '>', which surround the

substitution T are an obligatory part of the syntax of language C# and must

participate in the declaration of a generic class.

The declaration of generic class, which describes a shelter for homeless

animals, should look like as follows:

class AnimalShelter<T>
{
 // Class body here …
}

Let’s can imagine that we are creating a template of our class

AnimalShelter, which we will specify later, replacing T with a specific type,

for instance a Dog.

A particular class may have more than one substitute (to be parameterized by

more than one type), depending on its needs:

[<modifiers>] class <class_name><гɨ [, гɩ, [… [, гn]]]>
{
}

If the class needs several different unknown types, these types should be

listed by a comma between the characters '<' and '>' in the declaration of the

class, as each of the substitutes used must be different identifier (e.g. a

different letter) – in the definition they are indicated as T1, T2, …, Tn.

In case, we should to create a shelter for animals of a mixed type, one that

accommodates both – dogs and cats, we should declare the class as follows:

class AnimalShelter<T, U>
{
 // Class body here …
}

Chapter 14. Defining Classes 601

If this were our case, we would use the first parameter T, to indicate objects

of type Dog, which our class would operate with, and with U – to indicate

objects of type Cat.

Specifying Generic Classes

Before we present more details about generics, we should look at how to use

generic classes. The using of generic classes should be done as follows:

<class_name><concrete_type><variable_name> =
 new <class_name><concrete_type>();

Again, similar to T substitution in the declaration of our class, the characters

'<' and '>' surrounding a particular class concrete_type, are required.

If we want to create two shelters, one for dogs and one for cats, we should

use the following code:

AnimalShelter<Dog> dogsShelter = new AnimalShelter<Dog>();
AnimalShelter<Cat> catsShelter = new AnimalShelter<Cat>();

In this way, we ensure that the shelter dogsShelter will always contain

objects of a type Dog and the variable catsShelter will always operate with

objects of type Cat.

Using Unknown Types by Declaring Fields

Once used during the class declaration, the parameters that are used to

indicate the unknown types are visible in the whole body of the class,

therefore they can be used to declare the field as each other type:

[<modifiers>] T <field_name>;

As we can guess, in our example with shelter for homeless animals, we can

use this feature provided by language C#, to declare the type of field

animalsList, which holds references to objects for the housed animals,

instead of a specific type of Dog, with parameter T:

private T[] animalList;

Let’s assume when we create an object of our class, setting a specific type

(e.g. Dog) during the execution of the program, the unknown type T will

be replaced with the above type. If we choose to create a shelter for dogs,

we can consider that our field is declared as follows:

private Dog[] animalList;

602 Fundamentals of Computer Programming with C#

Accordingly, when we want to initialize a particular field in the constructor of

our class, we should do it as usual – creating an array, using substitution of

the unknown type – T:

public AnimalShelter(int placesNumber)
{
 animalList = new T[placesNumber]; // Initialization
 usedPlaces = 0;
}

Using Unknown Types in a Method’s Declaration

As an unknown type used in the declaration of a generic class is visible from

opening to closing brace of the class body, except for field’s declaration, it

can be used in a method declaration, namely:

As a parameter in the list of parameters of the method:

<return_type> MethodWithParamsOfT(T param)

- As a result of implementation of the method:

T MethodWithReturnTypeOfT(<params>)

As we already guessed, using our example, we can adapt the methods

Shelterſ…ƀ and Releaseſ…ƀ, respectively:

- As a method of unknown type parameter T:

public void Shelter(T newAnimal)
{
 // Method's body goes here …
}

- And a method, which returns a result of unknown type T:

public T Release(int i)
{
 // Method's body goes here …
}

As we already know when we create an object from our class shelter and

replace the unknown type with a specific one (e.g. Cat), during the execution

of the program, the above methods will have the following form:

- The parameter of method Shelter will be of type Cat:

Chapter 14. Defining Classes 603

public void Shelter(Cat newAnimal)
{
 // Method's body goes here …
}

- The method Release will return a result of type Cat:

public Cat Release(int i)
{
 // Method's body goes here …
}

Typifying (Generics) – Behind the Scenes

Before we continue, let’s us explain what happens into the memory of the

computer, when we work with generic classes.

First we declare our generic class MyClass<T> (generic class description in

the scheme above). Then the compiler translates our code to an intermediate

language (MSIL), as translated code contains information that the class is

generic, i.e. it works with undefined types until now. At runtime, when

someone tries to work with our generic class and tries to use it with a specific

type, a new description of the class is created (specific type class

description in the diagram above), which is identical to the generic class, with

the difference that where it has been used T, now is replaced by a specific

type. For example, if you try to use MyClass<int>, everywhere in your code,

where the unknown parameter T is used, it will be replaced with int. Only

then we can create object of a generic class with a specific type int. The

interesting thing here is that to create this object, the description of the class,

which was created in the meantime (specific type class description), will be

used. Instantiating of a generic class by given specific types of its parameters

is called "specialization of the type" or "extension of generic class".

Using our example, if we create an object of type AnimalShelter<T>, which

works only with objects of type Dog, if we try to add an object of type Cat,

this will cause a compile error almost identical to the errors, that were derived

by an attempt to add an object of type Cat, into an object of type

AnimalShelter, which we have created in section "Shelter for Homeless

Animals – Example":

MyClass<T> MyClass<concrete_type>
MyClass<concrete_type>

instance

generic class

description

concrete type

class description

concrete type

class instance

MyClass<T> MyClass<concrete_type>
MyClass<concrete_type>

instance

generic class

description

concrete type

class description

concrete type

class instance

604 Fundamentals of Computer Programming with C#

static void Main()
{
 AnimalShelter<Dog> dogsShelter = new AnimalShelter<Dog>(10);

 Cat cat1 = new Cat();

 dogsShelter.Shelter(cat1);
}

As expected, we get the following compilation error messages:

The best overloaded method match for 'AnimalShelter<
Dog>.Shelter(Dog)' has some invalid arguments

Argument 1: cannot convert from 'Cat' to 'Dog'

Generic Methods

Like classes, when the type of method’s parameters cannot be specified, we

can parameterize (typify) the method. Accordingly, the indication of a

specific type will happen during the invocation of the method, replacing the

unknown type with a specific one, as we did in the classes.

Typifying of a method is done, when after the name and before the opening

bracket of the method, we add <K>, where K is the replacement of the type

that will be used later:

<return_type><methods_name><K>(<params>)

Accordingly, we can use unknown type K for parameters in the parameter’s
list of method <params>, whose type is unknown and also for return value or

to declare variables of type substitute K in the body of the method.

For example, consider a method that swaps the values of two variables:

public void Swap<K>(ref K a, ref K b)
{
 K oldA = a;
 a = b;
 b = oldA;
}

This is a method that swaps the values of two variables, without carrying of

their types. That is why we define it as a generic, so we can use it for all

types of variables.

Chapter 14. Defining Classes 605

Accordingly, if we want to swap the values of two integers and then two string

variables, we should use our method:

int num1 = 3;
int num2 = 5;
Console.WriteLine("Before swap: {0} {1}", num1, num2);
// Invoking the method with concrete type (int)
Swap<int>(ref num1, ref num2);
Console.WriteLine("After swap: {0} {1}\n", num1, num2);

string str1 = "Hello";
string str2 = "There";
Console.WriteLine("Before swap: {0} {1}!", str1, str2);
// Invoking the method with concrete type (string)
Swap<string>(ref str1, ref str2);
Console.WriteLine("After swap: {0} {1}!", str1, str2);

When you run this code, the result is as expected:

Before swap: 3 5
After swap: 5 3

Before swap: Hello There!
After swap: There Hello!

We notice that in the list of parameters we have used also the keyword ref.

This concerns the specification of the method – namely, to exchange the

values of two references. By using the keyword ref, the method will use the

same reference that was given by the calling method. This way, all changes

on this variable made by our method, will remain after the method exits.

We should know that by calling a generic method, we can miss the explicit

declaration of a specific type (in our example <int>), because the compiler

will detect it automatically, recognizing the type of the given parameters. In

other words, our code can be simplified using the following calls:

Swap(ref num1, ref num2); // Invoking the method Swap<int>
Swap(ref str1, ref str2); // Invoking the method Swap<string>

We should know that the compiler will be able to recognize what is the

specific type, only if this type is involved in the parameter’s list. The

compiler cannot recognize what is the specific type of a generic method only

by the type its return value or if it does not have parameters. In both cases,

this specific type will have to be given explicitly. In our example, it will be

similar to the original method call, or by adding <int> or <string>.

606 Fundamentals of Computer Programming with C#

It should be noticed that static methods can also be typified, unlike the

properties and constructors of the class.

Static methods can also be typified, but properties and

constructors of the class cannot.

Features by Declaration of Generic Methods in

Generic Classes

As we have already seen in the section "Using Unknown Types in a

Declaration of Methods", non-generic methods can use unknown types,

described in the generic class declaration (e.g. methods Shelter() and

Release() from the example “Shelter for Homeless Animals”):

AnimalShelter.cs

public class AnimalShelter<T>
{
 // … гhe rest of the code …

 public void Shelter(T newAnimal)
 {
 // Method body here
 }

 public T Release(int i)
 {
 // Method body here
 }
}

If we try to reuse the variable, which is used to mark the unknown type of the

generic class, for example as T, in the declaration of generic method, then

when we try to compile the class, we will get a warning CS0693. This is

happening because the scope of action of the unknown type T, defined in

declaration of the method, overlaps the scope of action of the unknown type

T, in class declaration:

CommonOperations.cs

public class CommonOperations<T>
{
 // CS0693
 public void Swap<T>(ref T a, ref T b)
 {

Chapter 14. Defining Classes 607

 T oldA = a;
 a = b;
 b = oldA;
 }
}

When you try to compile this class, you receive the following message:

Type parameter 'T' has the same name as the type parameter from
outer type 'CommonOperations<T>'

So if we want our code to be flexible, and our generic method safely to be

called with a specific type, different from that in the generic class by

instantiating it, we just have to declare the replacement of the unknown type

in the declaration of the generic method to be different than the

parameter for the unknown type in the class declaration, as shown below:

CommonOperations.cs

public class CommonOperations<T>
{
 // No warning
 public void Swap<K>(ref K a, ref K b)
 {
 K oldA = a;
 a = b;
 b = oldA;
 }
}

Thus, always make sure that there will be no overlapping of substitutes of the

unknown types of method and class.

Using a Keyword "default" in a Generic Source Code

Once we have introduced the basics of generic types, let’s try to redesign

our first example in this section (Shelter for Homeless Animals). The only

thing we need to do is to replace the type Dog with some parameter T:

AnimalsShelter.cs

public class AnimalShelter<T>
{
 private const int DefaultPlacesCount = 20;

 private T[] animalList;

608 Fundamentals of Computer Programming with C#

 private int usedPlaces;

 public AnimalShelter() : this(DefaultPlacesCount)
 {
 }

 public AnimalShelter(int placesCount)
 {
 this.animalList = new T[placesCount];
 this.usedPlaces = 0;
 }

 public void Shelter(T newAnimal)
 {
 if (this.usedPlaces >= this.animalList.Length)
 {
 throw new InvalidOperationException("Shelter is full.");
 }
 this.animalList[this.usedPlaces] = newAnimal;
 this.usedPlaces++;
 }

 public T Release(int index)
 {
 if (index < 0 || index >= this.usedPlaces)
 {
 throw new ArgumentOutOfRangeException(
 "Invalid cell index: " + index);
 }
 T releasedAnimal = this.animalList[index];
 for (int i = index; i <this.usedPlaces - 1; i++)
 {
 this.animalList[i] = this.animalList[i + 1];
 }
 this.animalList[this.usedPlaces - 1] = null;
 this.usedPlaces--;

 return releasedAnimal;
 }
}

Everything looks to work properly, until we try to compile the class. Then we

get the following error:

Chapter 14. Defining Classes 609

Cannot convert null to type parameter 'T' because it could be a
non-nullable value type. Consider using 'default(T)' instead.

The error is inside the method Release() and it is related to the recording a

null value in the last released (rightmost) cell in the shelter. The problem is

that we are trying to use the default value for a reference type, but we are

not sure whether this type is a reference type or a primitive. Therefore

the compiler displays the errors above. If the type AnimalShelter is

instantiated by a structure and not by a class, then the null value is not valid.

To handle this problem, in our code we have to use the construct default(T)

instead of null, which returns the default value for the particular type that

will be used instead of T. As we know, the default value for reference type is

null, and for numeric types – zero. We can make the following change:

// this.animalList[this.usedPlaces - 1] = null;
this.animalList[this.usedPlaces - 1] = default(T);

Finally the compilation runs smoothly and the class AnimalShelter<T>
operates correctly. We can test it as follows:

static void Main()
{
 AnimalShelter<Dog> shelter = new AnimalShelter<Dog>();
 shelter.Shelter(new Dog());
 shelter.Shelter(new Dog());
 shelter.Shelter(new Dog());
 Dog d = shelter.Release(1); // Release the second dog
 Console.WriteLine(d);
 d = shelter.Release(0); // Release the first dog
 Console.WriteLine(d);
 d = shelter.Release(0); // Release the third dog
 Console.WriteLine(d);
 d = shelter.Release(0); // Exception: invalid cell index
}

Advantages and Disadvantages of Generics

Generic classes and methods increase the reusability of the code, the

security and the performance compared to other non-generic alternatives.

As a general rule, the programmer should strive to create and use

generic classes, whenever it is possible. The more generic types are

used, the higher level of abstraction there is in the program and the source

code becomes more flexible and reusable. However we should keep in mind,

that overuse of generics can lead to over-generalization and the code may

become unreadable and difficult to understand by other programmers.

610 Fundamentals of Computer Programming with C#

Naming the Parameters of the Generic Types

Before we finish generics as a topic, let’s give you some guidance on working

with the substitutes (parameters) of unknown types in a generic class:

1. If there is just one unknown type in the generic, it is common to use the

letter T, as a substitute for that unknown type. As an example we can

give our class declaration AnimalShelter<T>, which we used until now.

2. To the substitutes should be given the most descriptive names, unless a

letter is not a sufficiently descriptive and well-chosen name, this will not

improve readability of the source code. For instance, we can modify our

example, replacing the letter T, with the more descriptive substitute for

Animal:

AnimalShelter.cs

public class AnimalShelter<Animal>
{
 // … The rest of the code …

 public void Shelter(Animal newAnimal)
 {
 // Method body here
 }

 public Animal Release(int i)
 {
 // Method body here
 }
}

When we use descriptive names of substitutes instead of a letter, it is better

to add T at the beginning of the name, to distinguish it more easily from the

class names in our application. In other words, instead of using a substitute

Animal in the previous example, we should use TAnimal (T comes from the

word "template" which means a parameterized / generic type).

Exercises

1. Define a class Student, which contains the following information about

students: full name, course, subject, university, e-mail and phone

number.

2. Declare several constructors for the class Student, which have different

lists of parameters (for complete information about a student or part of

it). Data, which has no initial value to be initialized with null. Use

nullable types for all non-mandatory data.

Chapter 14. Defining Classes 611

3. Add a static field for the class Student, which holds the number of

created objects of this class.

4. Add a method in the class Student, which displays complete information

about the student.

5. Modify the current source code of Student class so as to encapsulate

the data in the class using properties.

6. Write a class StudentTest, which has to test the functionality of the

class Student.

7. Add a static method in class StudentTest, which creates several

objects of type Student and store them in static fields. Create a static

property of the class to access them. Write a test program, which

displays the information about them in the console.

8. Define a class, which contains information about a mobile phone:

model, manufacturer, price, owner, features of the battery (model, idle

time and hours talk) and features of the screen (size and colors).

9. Declare several constructors for each of the classes created by the

previous task, which have different lists of parameters (for complete

information about a student or part of it). Data fields that are unknown

have to be initialized respectively with null or 0.

10. To the class of mobile phone in the previous two tasks, add a static field

nokiaN95, which stores information about mobile phone model Nokia

N95. Add a method to the same class, which displays information about

this static field.

11. Add an enumeration BatteryType, which contains the values for type

of the battery (Li-Ion, NiMH, NiCd, …) and use it as a new field for the

class Battery.

12. Add a method to the class GSM, which returns information about the

object as a string.

13. Define properties to encapsulate the data in classes GSM, Battery and

Display.

14. Write a class GSMTest, which has to test the functionality of class GSM.

Create few objects of the class and store them into an array. Display

information about the created objects. Display information about the

static field nokiaN95.

15. Create a class Call, which contains information about a call made via

mobile phone. It should contain information about date, time of start and

duration of the call.

16. Add a property for keeping a call history – CallHistory, which holds a

list of call records.

612 Fundamentals of Computer Programming with C#

17. In GSM class add methods for adding and deleting calls (Call) in the

archive of mobile phone calls. Add method, which deletes all calls from

the archive.

18. In GSM class, add a method that calculates the total amount of calls

(Call) from the archive of phone calls (CallHistory), as the price of a

phone call is passed as a parameter to the method.

19. Create a class GSMCallHistoryTest, with which to test the functionality

of the class GSM, from task 12, as an object of type GSM. Then add to it a

few phone calls (Call). Display information about each phone call.

Assuming that the price per minute is 0.37, calculate and display the total

cost of all calls. Remove the longest conversation from archive with

phone calls and calculate the total price for all calls again. Finally, clear

the archive.

20. There is a book library. Define classes respectively for a book and a

library. The library must contain a name and a list of books. The books

must contain the title, author, publisher, release date and ISBN-number.

In the class, which describes the library, create methods to add a book to

the library, to search for a book by a predefined author, to display

information about a book and to delete a book from the library.

21. Write a test class, which creates an object of type library, adds several

books to it and displays information about each of them. Implement a

test functionality, which finds all books authored by Stephen King and

deletes them. Finally, display information for each of the remaining

books.

22. We have a school. In school we have classes and students. Each class

has a number of teachers. Each teacher has a variety of disciplines

taught. Students have a name and a unique number in the class. Classes

have a unique text identifier. Disciplines have a name, number of lessons

and number of exercises. The task is to shape a school with C# classes.

You have to define classes with their fields, properties, methods and

constructors. Also define a test class, which demonstrates, that the

other classes work correctly.

23. Write a generic class GenericList<T>, which holds a list of elements of

type T. Store the list of elements into an array with a limited capacity

that is passed as a parameter of the constructor of the class. Add

methods to add an item, to access an item by index, to remove an item

by index, to insert an item at given position, to clear the list, to search

for an item by value and to override the method ToString().

24. Implement auto-resizing functionality of the array from the previous

task, when by adding an element, it reaches the capacity of the array.

25. Define a class Fraction, which contains information about the rational

fraction (e.g. ¼ or ½). Define a static method Parse() to create a

fraction from a sting (for example -3/4). Define the appropriate

Chapter 14. Defining Classes 613

properties and constructors of the class. Also write property of type

Decimal to return the decimal value of the fraction (e.g. 0.25).

26. Write a class FractionTest, which tests the functionality of the class

Fraction from previous task. Pay close attention on testing the function

Parse with different input data.

27. Write a function to cancel a fraction (e.g. if numerator and denominator

are respectively 10 and 15, fraction to be cancelled to 2/3).

Solutions and Guidelines

1. Use enum for subjects and universities.

2. To avoid repetition of source code call constructors from each other

with keyword this(<parameters>).

3. Use the constructor of the class as a place where the number of objects

of class Student is increasing.

4. Display on the console in all fields of the class Student, followed by a

blank line.

5. Define as private all members of the class Student and then using

Visual Studio (Refactor -> Encapsulate Field) define automatically the

public get / set methods to access these fields.

6. Create a few students and display the whole information for each one

of them.

7. You can use the static constructor to create instances in the first access

to the class.

8. Declare three separate classes: GSM, Battery and Display.

9. Define the described constructors and create a test program to check if

classes are working properly.

10. Define a private field and initialize it at the time of its declaration.

11. Use enum for the type of battery. Search in Internet for other types of

batteries for phones, except these in the requirements and add them as

value of the enumeration.

12. Override the method ToString().

13. In classes GSM, Battery and Display define suitable private fields and

generate get / set. You can use automatic generation in Visual Studio.

14. Add a method PrintInfo() in class GSM.

15. Read about the class List<T> in Internet. The class GSM has to store its

conversations in a list of type List<Call>.

16. Return as a result the list of conversations.

614 Fundamentals of Computer Programming with C#

17. Use the built-in methods of the class List<T>.

18. Because the tariff is fixed, you can easily calculate the total price of

all calls.

19. Follow the instructions directly from the requirements of the task.

20. Define classes Book and Library. For a list of books use List<Book>.

21. Follow the instructions directly from the requirements of the task.

22. Create classes School, SchoolClass, Student, Teacher, Discipline

and define into them their respective fields, as described in the

instructions of the task. Do not use the word "Class" as a class name,

because in C# it has special meaning. Add methods for printing all the

fields from each of the classes.

23. Use your knowledge concerning generic classes. Check out all input

parameters of the methods, just to make sure that no element can

access an invalid position.

24. When you reach the capacity of the array, create a new array with a

double size and copy all old elements in the new one.

25. Write a class with two private decimal fields, which hold information

relevant to the numerator and denominator of the fraction. Among

other requirements in the task, redefine in appropriate standard the

features for each object: Equalsſ…ƀ, GetHashCode(), ToString().

26. Figure out appropriate tests, for which your function may give incorrect

results. Good practice is first to write the tests, then to implement

their specific functionality.

27. Search for information in Internet for the “greatest common divisor

(GCD)” and the Euclidean algorithm for its calculation. Divide the

numerator and denominator of their greatest common divisor and you

will get the cancelled fraction.

